Supply Side Review: Heat of Compression-Type Dryers

The supply side of a compressed air system has many critical parts that factor in to how well the system operates and how easily it can be maintained.   Dryers for the compressed air play a key role within the supply side are available in many form factors and fitments.  Today we will discuss heat of compression-type dryers.

Heat of compression-type dryer- Twin Tower Version

Heat of compression-type dryers are a regenerative desiccant dryer that take the heat from the act of compression to regenerate the desiccant.  By using this cycle they are grouped as a heat reactivated dryer rather than membrane technology, deliquescent type, or refrigerant type dryers.   They are also manufactured into two separate types.

The single vessel-type heat of compression-type dryer offers a no cycling action in order to provide continuous drying of throughput air.  The drying process is performed within a single pressure vessel with a rotating desiccant drum.  The vessel is divided into two air streams, one is a portion of air taken straight off the hot air exhaust from the air compressor which is used to provide the heat to dry the desiccant. The second air stream is the remainder of the air compressor output after it has been processed through the after-cooler. This same air stream passes through the drying section within the rotating desiccant drum where the air is then dried.  The hot air stream that was used for regeneration passes through a cooler just before it gets reintroduced to the main air stream all before entering the desiccant bed.  The air exits from the desiccant bed and is passed on to the next point in the supply side before distribution to the demand side of the system.

The  twin tower heat of compression-type dryer operates on the same theory and has a slightly different process.  This system divides the air process into two separate towers.  There is a saturated tower (vessel) that holds all of the desiccant.  This desiccant is regenerated by all of the hot air leaving the compressor discharge.  The total flow of compressed air then flows through an after-cooler before entering the second tower (vessel) which dries the air and then passes the air flow to the next stage within the supply side to then be distributed to the demand side of the system.

The heat of compression-type dryers do require a large amount of heat and escalated temperatures in order to successfully perform the regeneration of the desiccant.  Due to this they are mainly observed being used on systems which are based on a lubricant-free rotary screw compressor or a centrifugal compressor.

No matter the type of dryer your system has in place, EXAIR still recommends to place a redundant point of use filter on the demand side of the system.  This helps to reduce contamination from piping, collection during dryer down time, and acts as a fail safe to protect your process.  If you would like to discuss supply side or demand side factors of your compressed air system please contact us.

Brian Farno
Application Engineer


Heat of compression image: Compressed Air Challenge: Drive down your energy costs with heat of compression recovery:


Refrigerant Compressed Air Dryer Systems

No matter what your use of compressed air entails, moisture is very likely an issue.  Air compressors pressurize air that they pull in straight from the environment and most of the time, there’s at least a little humidity involved.  Now, if you have an industrial air compressor, it’s also very likely that it was supplied with a dryer, for this very reason.

There are different types of dryer systems, depending on your requirements.

For practical purposes, “dryness” of compressed air is really its dew point.  That’s the temperature at which water vapor in the air will condense into liquid water…which is when it becomes the aforementioned issue in your compressed air applications.  This can cause rust in air cylinders, motors, tools, etc.  It can be detrimental to blow offs – anything in your compressed air flow is going to get on the surface of whatever you’re blowing onto.  It can lead to freezing in Vortex Tube applications when a low enough cold air temperature is produced.

Some very stringent applications (food & pharma folks, I’m looking at you) call for VERY low dew points…ISO 8673.1 (food and pharma folks, you know what I’m talking about) calls for a dew point of -40°F (-40°C) as well as very fine particulate filtration specs.  As a consumer who likes high levels of sanitary practice for the foods and medicines I put in my body, I’m EXTREMELY appreciative of this.  The dryer systems that are capable of low dew points like this operate as physical filtration (membrane types) or effect a chemical reaction to absorb or adsorb water (desiccant or deliquescent types.)  These are all on the higher ends of purchase price, operating costs, and maintenance levels.

For many industrial and commercial applications, though, you really just need a dew point that’s below the lowest expected ambient temperature in which you’ll be operating your compressed air products & devices.  Refrigerant type air dryers are ideal for this.  They tend to be on the less expensive side for purchase, operating, and maintenance costs.  They typically produce air with a dew point of 35-40°F (~2-5°C) but if that’s all you need, they let you avoid the expense of the ones that produce those much lower dew points.  Here’s how they work:

  • Red-to-orange arrows: hot air straight from the compressor gets cooled by some really cold air (more on that in a moment.)
  • Orange-to-blue arrows: the air is now cooled further by refrigerant…this causes a good amount of the water vapor in it to condense, where it leaves the system through the trap & drain (black arrow.)
  • Blue-to-purple arrows: Remember when the hot air straight from the compressor got cooled by really cold air? This is it. Now it flows into the compressed air header, with a sufficiently low dew point, for use in the plant.

Non-cycling refrigerant dryers are good for systems that operate with a continuous air demand.  They have minimal dew point swings, but, because they run all the time, they’re not always ideal when your compressed air is not in continuous use.  For those situations, cycling refrigerant dryers will conserve energy…also called mass thermal dryers, they use the refrigerant to cool a solution (usually glycol) to cool the incoming air.  Once the glycol reaches a certain temperature, the system turns on and runs until the solution (thermal mass) is cooled, then it turns off.  Because of this, a cycling system’s operating time (and cost) closely follows the compressor’s load – so if your compressor runs 70% of the time, a cycling dryer will cost 30% less to operate than a non-cycling one.

EXAIR Corporation wants you to get the most out of your compressed air system.  If you have questions, I’d love to hear from you.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Case For Desiccant Compressed Air Dryers

Most people are familiar with desiccant from the small packets we find enclosed with a new pair of shoes, in a bag of beef jerky, or in some medication bottles.  These packets almost always say “Do Not Eat,” and I get that for the ones in the beef jerky or the pill bottles, but I just don’t understand why they put it on the desiccant packets bound for a shoe box…

Anyway, desiccant (in MUCH larger volumes than the household examples above) are also used to get water vapor out of compressed air.  Desiccant dryers are popular because they’re effective and reliable.  The most common design consists of two vertical tanks, or towers, filled with desiccant media – usually activated alumina or silica gel.

These materials are prone to adsorption (similar to absorption, only it’s a physical process instead of a chemical one) which means they’re good at trapping, and holding, water.  In operation, one of these towers has air coming in it straight from the compressor (after it’s become pressurized, remember, it still has just as much water vapor in it as it did when it was drawn in…up to 5% of the total gas volume.)

When that tower’s desiccant has adsorbed water vapor for long enough (it’s usually controlled by a timer,) the dryer controls will port the air through the other tower, and commence a restoration cycle on the first tower.  So, one is always working, and the other is always getting ready for work.

There are three methods by which the desiccant media can be restored:

  • Regenerative Desiccant Dryers send a purge flow of dry air (fresh from the operating tower’s discharge) through the off-line tower’s desiccant bed.  This dry air flow reverses the adsorption process, and carries the water away as it’s exhausted from the dryer.  This is simple and effective, but it DOES use a certain amount of your compressed air.
  • Heat Of Compression Desiccant Dryers use the heat from pressurized air straight from the compressor(s).  This hot air is directed through one tower, where it removes moisture from the desiccant.  It then flows through a heat exchanger where it’s cooled, condensing the moisture, before it flows through the other tower to remove any remaining moisture.  This method doesn’t add to your compressed air usage, but it only works with oil-free compressors.
  • The third method uses a hot air blower to flow heated air through the off-line desiccant bed.  It’s similar to the Regenerative type, but it doesn’t use compressed air.  However, they DO require a certain amount of wattage for the heater…remember, electricity isn’t cheap either.

As an EXAIR Application Engineer, it’s my job to help you get the most out of our products, and your compressed air system.  If you have questions about compressed air, call me.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook


Intelligent Compressed Air: Deliquescent Dryers – What are They and How do They Work?

EXAIR has written blogs about the different types of dryers that are used to remove liquid from compressed air systems. In this blog, I will be discussing the deliquescent dryer. This dryer falls under the desiccant dryer category, and unlike the regenerative cousins, it is the least commonly used type of dryer. The regenerative desiccant dryers use a medium that will adsorb the water vapor, and the deliquescent dryers use a hygroscopic material that will absorb the water vapor. This salt-like medium has a strong affinity for water, and it comes in a tablet or briquette form. Placed inside a single unit pressure vessel, the “wet” compressed air passes through the bed to become dry. The size of the pressure vessel is determined by the compressed air usage which allows for the proper amount of contact time with the hygroscopic bed. Generally, the dew point will be between 20 to 50 deg. F (11 – 28 deg. C) less than the compressed air inlet temperature. Unlike most dryers, the dew point after deliquescent dryers will vary with the inlet air temperatures.

Vessel Design

The design of vessel is very important for the function of a deliquescent dryer. A grate is required to hold the medium off the bottom. The compressed air will flow from the bottom, up through the bed, and out from the top. The predetermined space between the bed and the bottom of the vessel is used for the liquid that is generated. When “wet” compressed air passes through the bed, the hygroscopic material will absorb the water and change the tablets from a solid into a liquid. Deliquescent dryers got the name from the definition of the verb, “deliquesce” which is “becomes liquid by absorbing moisture from the air”. Once the material is turned into a liquid, it cannot be regenerated. The liquid must be discarded periodically from the vessel and new solid material must be added. With the single tower design, the deliquescent dryers are relatively inexpensive.

Some advantages in using the deliquescent dryers are that they do not require any electricity or have any moving parts. So, they can be used in remote locations, rugged areas, or hazardous locations. They are commonly used to reduce the dew point in compressed air, natural gas, landfill gas and biogas systems. Without the ability for regeneration, no additional compressed air will be lost or used. In comparing the power requirement to other compressed air dryers, the deliquescent dryers have the lowest power requirement at 0.2Kw/100 cfm of air. (This energy rating is only due to the additional power required for the air compressor to overcome the pressure drop in the dryer).

Some disadvantages in using the deliquescent dryers is that the hygroscopic material degrades. The deliquesced liquid does have to be drained and disposed, and new material does have to be added. Even though they do not have any moving parts, they still require periodic maintenance. The deliquescent material can be corrosive. So, after-filters are required to capture any liquid or dust material that may carry over and damage downstream piping and pneumatic components. Also, the variation in the dew point suppression can limit locations and areas where it can be used.

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Products, you can contact an Application Engineer at EXAIR. We would be happy to hear from you.

John Ball
Application Engineer
Twitter: @EXAIR_jb


Photos:  used from Compressed Air Challenge Handbook

Twin Line Vac Solution For Transferring Alumina Desiccant

LV feeding tank 2
The tank on the right needs to be filled and drained of alumina desiccant

The sketch above shows a 115” tall tank which needs to be filled and emptied multiple times with activated alumina desiccant.  The desiccant ranges in size from 1/8” to ¼” with a median size of 5/32”, and has a bulk density of 48 pounds/ft³.  The material has no fire or spill hazards, and poses a low health risk.  (We evaluate these characteristics with every application to ensure the Line Vac is a viable solution.)  The end user wanted to find a solution to move the alumina into the tank, and then a method to move it out of the tank.  Total material transfer could be as high as 1500 pounds/hour.

Originally, the end user considered the setup shown below.  This setup would empty the tank through the top, and then use the same Line Vac to refill.

LV feeding tank
Original transfer solution

What the end user and I came to realize, is that we could achieve full automation in emptying the tank by using a dedicated Line Vac with a slide gate.  And, another dedicated Line Vac could be used to fill the tank, preventing any toggling of the Line Vac orientation. This was the solution, one Line Vac on the desiccant fill port and one Line Vac on the desiccant empty port.

Because of the high conveyance rate and the requirement for a material which could withstand abrasives, model 150200, our 2″ Heavy Duty Line Vac made of a hardened alloy, was recommended.

If you have a material conveyance application and need a compressed air based solution, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer