Application Database: Compressed Air Use in the Food & Beverage Industry

EXAIR uses many different methods to connect with our customers.  We have our website, social media, blogs, publications etc. We like to share solutions for some of the most common pneumatic problems in the industry.  EXAIR generated a large collection of application information where EXAIR products have already solved problems and improved processes.  We organized them by Application and by Industry.  In this blog, I will show you how to use the Application database; specifically, for the Food and Beverage Industry.

Compressed Air Systems are considered to be a fourth utility within industries because they use a large amount of energy.  Whether an air compressor uses fuel for portable units or electricity, it is important to use this system as efficiently as possible.  This would apply to the Food and Beverage industry.  EXAIR has a library of different processes in which we already improved these areas safely and efficiently.  If you are in the Food and Beverage industry, it would benefit you to take a peek at the implementations where we already improved, establish OSHA safety, and saved money.

Here is how you can find this library.  First, you will have to sign into EXAIR.  Click here: Log In.  Once you fill in the proper information, you can then retrieve a great amount of resources about EXAIR products that we manufacture.   The Application Database is under the Knowledge Base tab.  (Reference photo below).

At the Application Search Library, we have over one thousand application that we reference.  In the left selection pane, we organized then in alphabetical order under two categories, Applications and Industry.   (Reference photo below).

Scroll down in the selection pane until you come to the sub-category: Industry.  Under this Sub-category, you will find three selections that are related to this blog: Food and Beverage, Food Packaging, and Food Processing.  We have other applications that may relate to your process like; Beverage Bottling and Beverage.  You will find many applications that EXAIR has already helped to improve and it is documented.

Why is this important?  If you are a plant manager or owner, the value of the Application Database can improve your current processes with pre-qualified results.  Within the Food and Beverage industry, simple solutions can be found to address those “nagging” issues that you see every day.  For crisis situations and shutdowns, EXAIR categorized these applications in a way to reference quickly and easily.  And since EXAIR has a high volume of stocked quality items, we can get the parts to you very fast; minimizing downtime.

In today’s market, companies are always looking for ways to cut cost, increase productivity, and improve safety.  EXAIR can offer engineered products to do exactly that.  With the “been there and done that” solutions already described in the Application Database; you can have confidence in finding a way in solving pneumatic issues.  If you do not sign up at www.EXAIR.com and take advantage of these offerings, you will be missing out on a great tool in optimizing your compressed air system.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

 

People of Interest: Daniel Bernoulli

Daniel Bernoulli

Whenever there is a discussion about fluid dynamics, Bernoulli’s equation generally comes up. This equation is unique as it relates flow energy with kinetic energy and potential energy. The formula was mainly linked to non-compressible fluids, but under certain conditions, it can be significant for gas flows as well. My colleague, Tyler Daniel, wrote a blog about the life of Daniel Bernoulli (you can read it HERE). I would like to discuss how he developed the Bernoulli’s equation and how EXAIR uses it to maximize efficiency within your compressed air system.

In 1723, at the age of 23, Daniel moved to Venice, Italy to learn medicine. But, in his heart, he was devoted to mathematics. He started to do some experiments with fluid mechanics where he would measure water flow out of a tank. In his trials, he noticed that when the height of the water in the tank was higher, the water would flow out faster. This relationship between pressure as compared to flow and velocity came to be known as Bernoulli’s principle. “In fluid dynamics, Bernoulli’s principle states that an increase in the speed of fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluids potential energy”1. Thus, the beginning of Bernoulli’s equation.

Bernoulli realized that the sum of kinetic energy, potential energy, and flow energy is a constant during steady flow. He wrote the equation like this:

Equation 1:

Bernoulli’s Equation

Not to get too technical, but you can see the relationship between the velocity squared and the pressure from the equation above. Being that this relationship is a constant along the streamline; when the velocity increases; the pressure has to come down. An example of this is an airplane wing. When the air velocity increases over the top of the wing, the pressure becomes less. Thus, lift is created and the airplane flies.

With equations, there may be limitations. For Bernoulli’s equation, we have to keep in mind that it was initially developed for liquids. And in fluid dynamics, gas like air is also considered to be a fluid. So, if compressed air is within these guidelines, we can relate to the Bernoulli’s principle.

  1. Steady Flow: Since the values are measured along a streamline, we have to make sure that the flow is steady. Reynold’s number is a value to decide laminar and turbulent flow. Laminar flows give smooth velocity lines to make measurements.
  2. Negligible viscous effects: As fluid moves through tubes and pipes, the walls will have friction or a resistance to flow. The surface finish has to be smooth enough; so that, the viscous effects is very small.
  3. No Shafts or blades: Things like fan blades, pumps, and turbines will add energy to the fluid. This will cause turbulent flows and disruptions along the velocity streamline. In order to measure energy points for Bernoulli’s equation, it has to be distant from the machine.
  4. Compressible Flows: With non-compressible fluids, the density is constant. With compressed air, the density changes with pressure and temperature. But, as long as the velocity is below Mach 0.3, the density difference is relatively low and can be used.
  5. Heat Transfer: The ideal gas law shows that temperature will affect the gas density. Since the temperature is measured in absolute conditions, a significant temperature change in heat or cold will be needed to affect the density.
  6. Flow along a streamline: Things like rotational flows or vortices as seen inside Vortex Tubes create an issue in finding an area of measurement within a particle stream of fluid.
Super Air Knife has 40:1 Amplification Ratio

Since we know the criteria to apply Bernoulli’s equation with compressed air, let’s look at an EXAIR Super Air Knife. Blowing compressed air to cool, clean, and dry, EXAIR can do it very efficiently as we use the Bernoulli’s principle to entrain the surrounding air. Following the guidelines above, the Super Air Knife has laminar flow, no viscous effects, no blades or shafts, velocities below Mach 0.3, and linear flow streams. Remember from the equation above, as the velocity increases, the pressure has to decrease. Since high-velocity air exits the opening of a Super Air Knife, a low-pressure area will be created at the exit. We engineer the Super Air Knife to maximize this phenomenon to give an amplification ratio of 40:1. So, for every 1 part of compressed air, the Super Air Knife will bring into the air streamline 40 parts of ambient “free” air. This makes the Super Air Knife one of the most efficient blowing devices on the market. What does that mean for you? It will save you much money by using less compressed air in your pneumatic application.

We use this same principle for other products like the Air Amplifiers, Air Nozzles, and Gen4 Static Eliminators. Daniel Bernoulli was able to find a relationship between velocities and pressures, and EXAIR was able to utilize this to create efficient, safe, and effective compressed air products. To find out how you can use this advantage to save compressed air in your processes, you can contact an Application Engineer at EXAIR. We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

  1. Wikipedia https://en.wikipedia.org/wiki/Bernoulli%27s_principle

Compressed Air Quality and ISO 8573-1 Purity Classes

Airborne particles surround us everywhere.   In a general work environment, nearly four million particles per cubic foot is floating around us at any given time.  When a compressor compresses this air, the concentration increases substantially.  So, compressed air is not only expensive to make, but very dirty.  As the air exits your air compressor and travels into your pneumatic system, there is so much contamination that the International Standard Organization, ISO, created an Air Quality chart with Purity Classes.

ISO8573-1-2010

This chart is easy to follow and can be found in the ISO8573-1 standard for Air Quality.  It is used to select a cleanliness level for your compressed air system.  The contamination is categorized into three areas; Particles, Water, and Oil (reference above).  A Class is associated with a number for each category ranging from 0 (most stringent) to 9 (most relaxed).  As an example, an Air Quality value of ISO8573-1:2010 [1.2.4] has a Class 1 for Particles, Class 2 for Water, and Class 4 for Oil.  These Class values will show the maximum value in each category.

To define the categories in more detail, I will separate the three to discuss the origins and solutions.

  • Particles: For solid particles, this part comes from many different areas.  The surrounding ambient air that is being drawn into the air compressor is filtered; but the intake filter will only remove large diameter particles.  The smaller diameter particles will go through the filter and into the compressed air system.  Another part is rust particles that occur from steel air pipes and receiver tanks.  Over time, rust will flake off and create particles that can affect pneumatic equipment.  Other particles can come from components inside the air compressor, valves, etc., that wear and breakdown.  In the ISO column for Particles, it is separated into three different micron ranges and concentrations.  The removal of particles from the compressed air is done by traps and compressed air filters.  EXAIR offers two types; Filter Separators with 5-micron filtration and Oil Removal Filters with 0.03-micron filtration.  There are other types of filtration systems depending on your ISO requirement.
  • Water:  Humidity is a natural occurrence as water vapor in the surrounding air.  It can be measured as a dew point temperature.  This is the temperature at which water will condense and make rain.  Inside an air compressor, the air is ‘squeezed”, and the amount of space for water vapor is reduced.  So, it will condense into liquid form as “rain” inside the pipes.  Air that comes out from an air compressor will always be saturated with water.  To remove liquid water, a mechanical device can be used.  Inside a Filter Separator, a centrifugal separator will spin the air and remove the liquid water.  To remove water vapor, a compressed air dryer is required like a refrigerant, desiccant, deliquescent, or membrane type.  Each type will have a dew point range that they can reach.  As an example, a refrigerant type will reduce the dew point near 37 oF (3 oC).  That means that water will not condense until the temperature reaches below 37 oF (3 oC).
  • Oil: This category can be found as a liquid, aerosol or vapor, and it includes more than just oil. It contains small hydrocarbons, CO, CO2, SO2, and NOX.  Oil mainly comes from inside an oil-flooded air compressor.  As the air passes through the compressor, it will pick up remnants of oil aerosols and carry it downstream.  With high temperatures inside the air compressor, some of the oil will vaporize.  Even with oil-less type air compressors, carbon vapor can still be an issue.  Small hydrocarbons can come through the air intake and condense inside the system like water vapor above.  To remove the liquid and aerosol type of oil, Oil Removal Filters can be used.  They are designed to “coalesce” the small particles into larger particles for gravity to remove.  Oil vapor requires an activated carbon to remove.  These types of filter units will adsorb the vapor.  This helps to remove odors as well as dangerous chemical vapors that may be in the compressed air line.

There are a variety of pneumatic systems that use the ISO8573-1 standard.  This will include breathing air operations, food and beverage, pharmaceutical, and the electronic industries.  If you need stringent requirement for your compressed air system, the Air Quality standard should be used by referring to the Class numbers above.  This helps to dictate the types of filtration and air dryers that should be used within your pneumatic system.  If you have any questions about your compressed air system, an Application Engineer at EXAIR can help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

ISO 8573-1 Chart by Compressed Air Best Practice.

EXAIR Around the World

I would like to share a conversation with a company that I visited in Singapore.  They manufactured natural rubber material, and they were having issues with material sticking inside the oven.  In our conversation, they would have to stop the process in order to clean the area near the chopping blades where the rubber material would collect.  The system would have to be shut down for the entire day to clean the oven which lost profit and production yields.

I was familiar with this company because they are global.  I remembered that I helped their American counterpart with the exact same application.  I was able to make a quick recommendation for the same product; two model 110260SSPKI Stainless Steel Super Air Knives.  They purchased and installed the Super Air Knives to generate an air curtain to keep the rubber material from sticking to the wall and forcing it into the grinder below.  This helped them to save a lot of money for unscheduled shutdowns.  If the U.S.A. company was able to share this information, it would have been a great cost savings for the corporation as a whole.

Since the establishment of EXAIR in 1983, customer satisfaction has always been the cornerstone of our business model.   And with that business model, our business continues to grow each year.  Now EXAIR is recognized as a brand of excellence.  We shaped this culture by having great customer service and high-quality products that are safe, effective, and very efficient.  With thousands of products in stock, we are able to ship with over a 99.9% on-time delivery.  As a company, EXAIR offers free expert technical advice and share solutions to pneumatic issues through EXAIR Blogs, Videos, application library, and social media.

In today’s market, many companies are global and have plants and facilities throughout the world.  If details like cost savings, safety, increased productivity, problem solving, and energy efficiency would be shared; it would be very beneficial for everyone.  It can help to grow profits, protect employees, improve throughput and save energy which will help to protect the environment.  Since EXAIR is a leader in these areas with compressed air products, we can help you and your affiliates with pneumatic solutions.

EXAIR sells direct in the U.S.A and Canada, and we have over 50 distributors located throughout the rest of the world.  EXAIR has structured our world-wide presence by country in our International Map located on our website.  It is simple to use.  To find a distributor, click on this link, International.  Fill in your Name, Email, and Country.  We also ask if you would like to receive news about EXAIR products in the future.  You can select “Yes” or “No”.  If you would like to obtain information monthly from EXAIR about new products, special notices, or featured products, then click “Yes”.  And, if we do not have a distributor in your area, EXAIR has an International Department that can assist you directly.

Just like the customer above, if the U.S. manufacturer was able to share the information with their sister company in Singapore, it would have saved them a great deal of grief.  To be more effective and efficient as a global company, there should be communication between associates.  If you or your affiliates use compressed air to cool, dry, clean, convey, vacuum, or remove static electricity, EXAIR can improve your process.  And if you have locations outside of U.S. and Canada, we can still help you.  You can contact us directly or visit our International Map.  You may find someone near you that can speak your language and discuss the values that EXAIR represents.  You will be glad you did.

Welcome to EXAIR.
Bienvenido a EXAIR.
Bienvenue chez EXAIR.
Добро пожаловать на EXAIR.
Witamy w EXAIR.
欢迎来到EXAIR。
Willkommen bei EXAIR.
Tervetuloa EXAIR: iin.
EXAIRへようこそ。
Bem-vindo ao EXAIR.
EXAIR에 오신 것을 환영합니다.
مرحبًا بك في EXAIR.

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

How to Calculate and Avoid Compressed Air Pressure Drop in Systems

EXAIR has been manufacturing Intelligent Compressed Air Products since 1983.  They are engineered with the highest of quality, efficiency, safety, and effectiveness in mind.  Since compressed air is the source for operation, the limitations can be defined by its supply.  With EXAIR products and pneumatic equipment, you will need a way to transfer the compressed air from the air compressor.  There are three main ways; pipes, hoses and tubes.  In this blog, I will compare the difference between compressed air hoses and compressed air tubes.

The basic difference between a compressed air hose and a compressed air tube is the way the diameter is defined.    A hose is measured by the inner diameter while a tube is measured by the outer diameter.  As an example, a 3/8” compressed air hose has an inner diameter of 3/8”.  While a 3/8” compressed air tube has an outer diameter that measures 3/8”.  Thus, for the same dimensional reference, the inner diameter for the tube will be smaller than the hose.

Why do I bring this up?  Pressure drop…  Pressure Drop is a waste of energy, and it reduces the ability of your compressed air system to do work.  To reduce waste, we need to reduce pressure drop.  If we look at the equation for pressure drop, DP, we can find the factors that play an important role.  Equation 1 shows a reference equation for pressure drop.

Equation 1:

DP = Sx * f * Q1.85 * L / (ID5 * P)

DP – Pressure Drop

Sx – Scalar value

f – friction factor

Q – Flow at standard conditions

L – Length of pipe

ID – Inside Diameter

P – Absolute Pressure

 

From Equation 1, differential pressure is controlled by the friction of the wall surface, the flow of compressed air, the length of the pipe, the diameter of the pipe, and the inlet pressure.  As you can see, the pressure drop, DP, is inversely affected by the inner diameter to the fifth power.  So, if the inner diameter of the pipe is twice as small, the pressure drop will increase by 25, or 32 times.

Let’s revisit the 3/8” hose and 3/8” tube.  The 3/8” hose has an inner diameter of 0.375”, and the 3/8” tube has an inner diameter of 0.25”.  In keeping the same variables except for the diameter, we can make a pressure drop comparison.  In Equation 2, I will use DPt and DPh for the pressure drop within the tube and hose respectively.

Equation 2:

DPt / DPh = (Dh)5 / (Dt)5

DPt – Pressure drop of tube

DPh – Pressure Drop of hose

Dh – Inner Diameter of hose

Dt – Inner Diameter of tube

Thus, DPt / DPh = (0.375”)5 / (0.25”)5 = 7.6

As you can see, by using a 3/8” tube in the process instead of the 3/8” hose, the pressure drop will be 7.6 times higher.

Diameters: 3/8″ Pipe vs. 3/8″ tube

At EXAIR, we want to make sure that our customers are able to get the most from our products.  To do this, we need to properly size the compressed air lines.  Within our installation sheets for our Super Air Knives, we recommend the infeed pipe sizes for each air knife at different lengths.

There is also an excerpt about replacing schedule 40 pipe with a compressed air hose.  We state; “If compressed air hose is used, always go one size larger than the recommended pipe size due to the smaller I.D. of hose”.  Here is the reason.  The 1/4” NPT Schedule 40 pipe has an inner diameter of 0.364” (9.2mm).  Since the 3/8” compressed air hose has an inner diameter of 0.375” (9.5mm), the diameter will not create any additional pressure drop.  Some industrial facilities like to use compressed air tubing instead of hoses.  This is fine as long as the inner diameters match appropriately with the recommended pipe in the installation sheets.  Then you can reduce any waste from pressure drop and get the most from the EXAIR products.

With the diameter being such a significant role in creating pressure drop, it is very important to understand the type of connections to your pneumatic devices; i.e. hoses, pipes, or tubes.  In most cases, this is the reason for pneumatic products to underperform, as well as wasting energy within your compressed air system.  If you would like to discuss further the ways to save energy and reduce pressure drop, an Application Engineer at EXAIR will be happy to assist you.

 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

EXAIR’s Huge Variety of Air Nozzles is Like an Equalizer for your Application

MCS 3035 Final

Many of us are familiar with what an equalizer (EQ) looks like and what it does. Unfortunately, sometimes they get a bad rap from so-called audiophiles, which in my opinion are defined individuals who spent so much money on their equipment they can’t afford to buy any music to play!  Typically, they insist that tone controls must be set to flat because the sound recording engineers mastering the music have already equalized the recording to perfection and if you need to attenuate or cut certain frequencies it is an indicator of poor-quality equipment, and that is simply is not true!

Let’s consider some of the reasons why an equalizer makes sense and, in my opinion, an absolute necessity. The objects and materials in the room will change the sound reproduction characteristics of any speaker system.  If you have large floor standing speakers positioned in the corners of the room, sitting directly on wood floors the speakers are now “acoustically coupled” with the floor and the walls.   On the other hand, if you move the speakers away from the wall and/or place them on spikes or stands (isolating them for the floor) you would have “acoustically de-coupled” the speakers from the walls and floor, which will reduce the bass or low-frequency loudness. This all affects the perceived loudness and/or quality of the music we want to listen too.

This is where the graphic equalizer shines, no need to move the speakers around or use speaker stands or spikes.  An equalizer will allow you to increase or decrease the loudness of multiple frequencies.  You can completely customize your sound to suit your tastes, overcome issues with your listening room acoustics, the speakers you are listening with or even anomalies with the music recording.

Like adjusting an equalizer to suit your room acoustics, speaker size and/or speaker frequency response, EXAIR understands that the need for many different options gives you the necessary adjustments for a successful application.  A few sizes of Air Nozzle, Air Jet or High Force Air Nozzles will not solve every application with the highest efficiency or effectiveness.  EXAIR’s air nozzle variety allows you to produce maximum effectiveness based upon the air pressure and air volume you have available.  Whether you need a strong blast or a gentle breeze, if you have tricky mounting positions or remote applications, EXAIR has the largest selection to choose from and solve your production problem.

We clearly state compressed air volume requirements in SCFM (Standard Cubic Feet per Minute) at a given operating pressure in PSI (Pounds per Square Inch), force at 12” from the compressed air outlet and the sound loudness in dBA at 3′ from the nozzle. These details provide the starting point for selecting the best air nozzle.

When you are looking for expert advice on safe, quiet, efficient, and engineered point of use compressed air products give us a call.   We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Helping Within Our Community

Throughout my tenure here at EXAIR I have seen the company give to many different organizations and to the team members here.   Recently we implemented a program where employees are allowed to choose a charity of their choice to go and volunteer for a day each year.  This year for my volunteer day a group of seven members from EXAIR went to help a non-profit organization that focuses on helping students and teachers in 16 local counties.

The organization, Crayons to Computers is a free store for teachers in these counties that surround Cincinnati.  The store is stocked with donations from corporate and private entities and staffed by volunteers.  Their inventory can be anywhere from classroom supplies, books, decorations, technology equipment, even stocked book bags to give to students.  The store is the largest of its kind here in the United States and has been serving the Cincinnati area for 20 years. Their belief is that a teacher should not have to spend money out of their pocket to supply students in need with school supplies and to ensure that schools in need have access to supplies that aren’t always easily available.

They have a sales floor where the teachers shop and then a large warehouse where the donations are all sorted and stocked for easy pull to the sales floor when needed.  This is where our team spent the day.  We did jobs like sorting books by reading level, organizing / packaging chair mats, unloading trucks, and finally, consolidating over 30,000 boxes of 24 count crayons so that their valuable warehouse space was being used more efficiently.  These crayons were all donated by financial institutions here locally that had challenged each other to see who could donate more.  It still isn’t the amount of crayons that they will supply to teachers within this school year, but it helps tremendously.

This slideshow requires JavaScript.

 

By volunteering our time we were also able to give 10 teachers who’s school would not normally qualify for shopping at Crayons To Computers the ability to go and shop for a day.  This was an added bonus that we were made aware of after the fact.  This is yet another way that Crayons to Computers gives to our community.

One of the best takeaways I have from this year is that I got to give back to an organization that my amazing wife would shop at when she was teaching students in need.  It was organized by someone here on our team that had no knowledge of my personal connection. We ended up getting more done than they had ever hoped to get out of 7 volunteers.  This was all made possible by a company that doesn’t just focus on making excellent products and providing top notch customer service.  EXAIR is also focusing on making sure our team members interests are embraced by letting them choose how to give their time and the companies time to a cause they believe will give back to our local community.

If you would like to inquire about donations or how you could help Crayons to Computers, please check out their site directly.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF
1-800-903-9247