Video Blog: Medium Vortex Tube Cooling Kit

EXAIR offers (3) Vortex Tube Cooling Kits, and the video below will provide an overview of the medium size offering, for refrigeration up to 2800 BTU/hr (706 Kcal/hr.)

If you have questions regarding Vortex Tube Cooling Kits or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Cabinet Cooler Systems Save The Day, Every Day

Summertime temperatures get hot. Protect your electronics with an EXAIR Cabinet Cooler System.

As you may have seen in our most recent E-NEWS Special Bulletin, or experienced in real life (depending on where you’re located,) most of the eastern United States is seeing a pretty significant heat wave for early summer…or, as we call it at EXAIR, “Cabinet Cooler Season.”  And this year is kicking it off with a bang, for sure.

On Tuesday, when the E-NEWS email went out, I was on the phone, processing an order for a Model 4340 NEMA 12, 2,800 Btu/hr, Thermostat Controlled Cabinet Cooler System, to ship overnight to a user who wanted to protect the new drive they were replacing because theirs overheated.  They were up and running before noon on Wednesday.

On Wednesday, four local customers placed “will call” orders for Cabinet Cooler Systems.  I had the pleasure of talking with one of them, who was installing one for the very first time.  As he was looking over the Installation & Operation Guide before he left our building, he just wanted to make sure that hooking it up was as simple as it sounded…and it is.  We pulled the parts from the box and went over exactly how each step is performed, and he left feeling confident that he’d have it installed pretty quickly.  Just in case, I also got his email address and sent him a link to our NEMA 4 Cabinet Cooler System Installation Video Blog:

I don’t know what the rest of the summer holds in store, but I know this: if you have concerns about protecting sensitive, critical, and/or expensive electrical & electronic enclosures, EXAIR Cabinet Cooler Systems are the solution you’re looking for.  Easy to install.  Maintenance free operation.  Durable, UL Listed, and CE Compliant.  If you’d like to discuss your application and get one for yourself, call me; let’s talk.

***Order an EXAIR Cabinet Cooler System before July 31, 2017, and get a FREE AC Sensor!***

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Mini Cooler Improves Custom Cutlery Production

Vortex Tubes use compressed air to create a stream of cold air and a stream of hot air. As the compressed air enters the unit, it travels through a spin chamber which spins the air at speeds up to 1,000,000 RPM producing temperatures ranging from -50°F to +260°F and providing cooling up to 10,200 Btu/hr. With no maintenance requited and no moving parts, they have become quite popular in large and small scale cooling applications in place of more conventional methods of cooling.

How an EXAIR Vortex Tube Works

EXAIR has incorporated this technology into several different products like our Cabinet Cooler Systems used to cool electrical panels and our Cold Guns commonly used to replace messy mist systems in tool cooling, milling and machining operations. For smaller scale processes we offer our Mini Cooler System which provides a 50°F temperature drop from the compressed air supply temperature and 550 Btu/hr. of cooling capacity.

I recently worked with a small, custom knife manufacturer who was looking for a way to keep his tooling cool during production. As the blades are made, he uses a small rotary die tool to shape and sharpen the blade. He also makes his own handles out of materials like wood, ceramics or other metals, which get etched with a custom design into the surface. The heat generated during theses processes, causes the tooling to either bend or break completely, resulting in damage to the knife blade and burns or breaks in the wood and ceramic handles. After looking at our spot cooling products online, he familiarized himself with the Vortex Tube technology but with only 12.9 SCFM of air available, he was unsure what product would best fit his application.

With the limited amount of air available, the Model # 3808 Mini Cooler System was the perfect solution. The Mini Cooler uses only 8 SCFM @ 100 PSIG, falling well within the capacity of his current compressor. The integral magnetic base would ensure an easy installation and with the included flexible hose, he could direct the cold air to the needed area.

The Mini Cooler is ideal for small tool and part cooling applications.

For help with your spot cooling needs or to discuss how the Vortex Tube technology could help in your process, contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

Camera Lens Cooling with EXAIR Vortex Tubes in a High Temperature Environment

Connection side of camera lens housing. Dimensions shown are in cm.

A customer in Russia contacted our distributor in Moscow about an application to monitor the flow of melted glass.  In their application, the end user had installed (4) camera “eyes” with thermal insulation to instantaneously measure the melted glass flow.  But, the high ambient temperatures would cause the temperature of the camera lens to slowly increase during operation, eventually resulting in an overheating condition.  This overheating condition rendered the cameras inoperable until they were cooled below a temperature of approximately 40°C (104°F).

What this end user (and application) needed was a suitable solution to cool the lens of the camera to a temperature below 40°C (104°F).  A typical refrigerant based air conditioner wouldn’t work for this application due to space and temperature constraints, as the cameras are located close to the furnace with ambient temperatures of 50°C (122°F) or higher.

What did provide a viable solution, however, were High Temperature EXAIR Vortex Tubes.  Suitable for temperatures up to 93°C (200°F), and capable of providing cooling capacities as high as 10,200 BTU/hr., these units fit the bill for this application.

Full view of the camera lens housing. The camera lens is the portion protruding from the far left of the housing.

After determining the volume of compressed air available for each camera, and after discussing the solution options and preferences with the customer, they chose (4) model BPHT3298 Vortex Tubes, using (1) Vortex Tube for each camera.  The cold air from the Vortex Tube will feed directly onto the camera lens, keeping it cool even in the hot ambient conditions.  This removes lost productivity due to machine downtime, which in turn increases output and reliability from the application process.

High Temperature Vortex Tubes provided a solution for this customer when other options were unable to deliver.  If you have a similar application or would like to discuss how an EXAIR Vortex Tube could solve an overheating problem in your application, contact an EXAIR Application Engineer.  We’ll be happy to help.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Trouble Identifying an EXAIR part? Don’t worry, we’ve got you covered!

3240VT

EXAIR Model 3240H Vortex Tube with Hot Muffler Installed

 

Not a day goes by that we don’t receive a call from a customer that is having trouble identifying an EXAIR part. Due to the robust nature of our Vortex Tubes, they can be installed in applications for several years without any maintenance. When the time comes to expand that line, the labels may have worn off, the unit may be covered in grime or oil, or the personnel that originally ordered the product may no longer be with the company. In any case, one of the Application Engineers here at EXAIR will certainly be able to help!

I recently received an e-mail from a gentlemen in Indonesia who was suffering from that very problem. They had a Model 3240 Vortex Tube installed in a camera cooling application near a boiler. The engineer who designed the project was no longer with the company and they could not determine a Model number or when they had purchased it. They saw the EXAIR sticker, along with our contact information, and reached out for help. Vortex Tube’s come in different sizes, based on the available compressed air supply as well as the level of refrigeration needed. They’re available in (3) different sizes as well as Vortex Tubes for max refrigeration (R style generators) and Vortex Tubes for a maximum cold temperature (C style generators). In order to identify the Model number, you must look on the shoulder of the Vortex Tube generator. On it, there will be a stamp that indicates the generator style that is installed. In this case, the customer stated that there was a “40-R”, indicating to me that he had our Model 3240 Vortex Tube.

Our team of highly trained Application Engineers is here ready to assist you with any needs you may have regarding EXAIR products. With a little bit of investigative work, a quick discussion about the dimensions or a photo; we’re able to identify any of our products. If you’re considering expanding a current line into other parts of your facility, or perhaps adding a new location and need help identifying your EXAIR products; give an Application Engineer a call and we’ll be sure you get the right products on order!

Tyler Daniel

Application Engineer

Twitter: @EXAIR_TD

E-mail: tylerdaniel@exair.com

Cooling Nylon Parts and Brushes with the Adjustable Spot Cooler

A robotics company called last week looking for a recommendation for a cooling device to use in their nylon plastic machining operation. They have a six axis robot, fitted with abrasive brushes, that “cleans” the part profiles as they are being moved from the milling area to the inspection location. The brushes were effective in removing the fines and particulate from the parts but they were starting to experience an increase in the amount of rejects as the brushes were generating heat, causing deformities to the profile.

Their initial thought was to use a liquid type method of cooling but with the parts having some small recesses and cavities that might trap fluid, this wasn’t going to be a reliable option for them. Another area of concern with using an air cooling device, was if the airflow was too forceful, the smaller parts they process may have the potential to “move” while being held by the robotic arm which could scratch or blemish the part.

After further conversation about the process, I recommended they use our Adjustable Spot Cooler in the application. The Adjustable Spot Cooler incorporates a Vortex Tube to produce a cold airstream as low as -30°F with an ambient air supply temperature. Using the temperature control valve, they can easily adjust the temperature drop and the volume (SCFM) of air being exhausted, to “dial” in the device to provide an adequate level of cooling while controlling the outlet flow to not disrupt the hold on the part itself. With the integral magnetic base and flexible tubing, they could easily mount the unit to the arm of the robot while directing the cold air to blow across the brushes and the part to keep them cool.

Model # 3825 Adjustable Spot Cooler System includes 2 extra generators to allow for more or less cooling capacity and airflow.

EXAIR offers a wide variety of spot cooling products for many different processes and uses. For help selecting the best option to fit your need or to discuss another product, give me a call, I’d be happy to help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

 

 

A Cold Gun Increase Speed for a Reel Manufacturer

When it comes to die stamping, friction generates heat.  Heat can be a big cause in slowing production and decreasing tool life.

Reel Film

A reel manufacturer was seeing the effects of the heat in their process.  They had a stamping machine that was creating sprocket holes in the outer edge of a 35mm film.  These holes are used for advancing the reel strip through printers, projectors, and processing machines.  They had to be particularly careful, as film materials warp easily with heat.  Some of us remember the film reels that would bubble and burn out when the film stopped in the projector.  (I am giving away my age a bit).  So, speed was critical as they did not want to create any quality issues.

They were intrigued with the EXAIR Vortex Tubes as it can generate cold air by only using compressed air.  Vortex Tubes do not use refrigerants or have any moving parts.  They are very compact and can fit into tight places.  If they could reduce the temperature in the stamping process, then they could speed up production.

Compact Vortex Tube

With the Vortex Tubes, EXAIR adds accessories to help with installations for different applications.  For this customer, the Cold Gun Aircoolant System was the best product to deliver the cold air.  I recommended the model 5315 Cold Gun System.  This product generates 1000 BTU/hr of cooling power, and it has a Dual Point Hose Kit to target both sides of the film reel.  It includes a magnetic base to securely position it on the stamping machine, and two 1” flat nozzle ends to attach at the end of the Dual Point Hose Kit.  These flat nozzles would help to direct the cold air in between the two stamping plates.   They were able to keep the film reel and the die stamp cool as they sped up their operation.  Even with the additional speed, they also noticed that the die stayed sharper 20% longer before they had to rework.

Cold Gun with Dual Hose Point

If you believe that heat is slowing down your system, EXAIR may have a product to keep it cool.  With the customer above, heat was a “reel” problem.  With the Cold Gun System, we were able to increase their productivity and decrease their downtime.  You can contact an Application Engineer to discuss your application if you believe that temperature is affecting your process.

 

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo: Movie Reel Film Cinema by JanBaby.  Creative Commons CC0 Public Domain.

%d bloggers like this: