What You Can Do With A Vortex Tube…And What You Can’t

Vortex Tubes are near the top of the list of the most interesting uses of compressed air: Cold (and hot) air, generated instantly, from a device with no moving parts. Why don’t we use them for EVERYTHING? It’s not that it CAN’T be done, but it can be impractical to do so. Consider:

While researching our Cabinet Cooler Systems, some callers will ask about using this technology to cool a space larger than an electrical panel, like a server room. I spoke with just such a caller once, who had 7.5kW worth of heat estimated in a server room that was under construction, and had been asked to research cooling solutions…so we did:

  • Since 1 watt equals 3.41 Btu/hr, 7.5 kilowatts equals 25,575 Btu/hr worth of cooling required.
  • Our highest capacity single Cabinet Cooler generates a cooling capacity of 2,800 Btu/hr, so we talked about ten of them, for ~10% safety factor, which was reasonable for the purposes of our discussion.
  • Each 2,800 Btu/hr Cabinet Cooler uses 40 SCFM @100psig, for a total of 28,000 SCFM. Using a common thumbrule that says a typical industrial air compressor generates 4 SCFM per horsepower, that means they’d need a 100HP compressor (or that much capacity from their whole system) just to run these Cabinet Coolers. Adding that cooling capacity to their HVAC requirements made more sense.

Of course, with every rule, there’s an exception: an independent crane operator carries a Model 3250 Large Vortex Tube with him for cab cooling in the tower cranes he’s contracted to operate. While the US Department of Energy considers “personnel cooling” to be an inappropriate use of compressed air, the small fans typically found in these cranes’ cabs offer little comfort to an operator spending all day, 50 feet off the ground, in the summer heat of the Deep South!

EXAIR offers 24 distinct Vortex Tube models with cooling capacities from 135 Btu/hr to 10,200 Btu/hr.

Another common question regards the use of a Vortex Tube with another EXAIR product…the most common being an Air Knife. These callers want to blow cold air onto something, but instead of the conical and relatively small flow pattern the Vortex Tube discharges, they want to blow a curtain of cold air. The design & function of both the Vortex Tube, and the Air Knife, work against this idea:

  • The cold air has to exit the Vortex Tube at, or very near, atmospheric pressure. If it encounters much back pressure at all, performance (as measured by the temperature and flow rate of the cold air) will deteriorate.
  • An Air Knife, by design, is pressurized all the way to the point where the compressed air flow exits the 0.002″ thick gap. That’s far too much back pressure for a Vortex Tube to operate under.
  • Even if the Vortex Tube DID supply cold air, under pressure, to the Air Knife, the tremendous amount of environmental air entrained by the Air Knife would still result in a total developed flow temperature that was much closer to ambient temperature for the area.
Since the Super Air Knife entrains air from the surrounding environment at a rate of 40:1, the resultant air temperature, regardless of the temperature of the air supply, is always going to be pretty close to ambient.

One “workaround” for this is what we informally call a “cold air knife” – that’s when you plumb the cold air from a Vortex Tube into a length of pipe with a series of holes drilled along its length. Let’s say a building products manufacturer wanted to blow cold air across a 10ft wide continuous sheet of roofing material…because they did:

  • I recommended that they take a PVC (because it’s non-conductive and wouldn’t transfer heat from ambient as fast) pipe a little longer than 10ft, cap the ends, drill 1/8″ holes every inch (total of 120 holes).
  • From the table below, we see that a 1/8″ diameter hole can flow as much as 1.1 cubic feet per minute @1psig*, so 120 of those holes will pass ~132 cubic feet per minute worth of air flow.
  • Four Model 3240 Vortex Tubes were specified: when set to an 80% Cold Fraction, 80% of the 40 SCFM that each will consume, or 32 SCFM, is directed to the cold end. 32 SCFM X 4 3240’s = 128 SCFM. Close enough. They plumbed those 4 Vortex Tubes at approximate equal distances along the length.
*I picked 2psig because that’s the maximum back pressure before it starts to change performance. I also assumed we’re not going to round the entrance of the holes, so I applied the 0.61 multiplier from the table notes.

A Model 3215 Medium Vortex Tube supplied @100psig will flow 10 SCFM worth of cold air when set to a 67% Cold Fraction**, which will give us a curtain of cold air that’s a little more than 71°F colder than the compressed air supply:

**When set to a 70% Cold Fraction (that means 70% of the compressed air supply flow is directed to the cold end), the cold flow from a Vortex Tube supplied @100psig will be 71°F colder than the compressed air supply. At a 67% Cold Fraction, it’ll be a little colder than that.

If you’ve got an application involving the need for cold air, on demand, EXAIR has a variety of products that’ll do just that. Give me a call to find out more.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

What I Do

I’ve blogged before about having a fantastic wife and three smart and rapidly growing daughters. Our nightly routine is one that gets to be cumbersome and sometimes painful, at the same time, I wouldn’t change a single aspect as it gives both my wife and me one on one time with each girl. Even my pre-teen daughter still wants this one-on-one time when we just sit and calm down from the day by talking or singing in her case. I know it won’t last forever, so I always try to stay present. Here lately all three of my daughters on different days have asked me what I do at work during the day. It caught me off guard all three times.

They know that I work for EXAIR, and they know we make “stuff”, they’ve been to the company parties and even had lunch with me here in the office, they still didn’t know what I did, and at the time each one asked, even I didn’t know what I did. The answers I gave were all fairly similar. I help people figure out how to fix stuff by using the stuff we make. If they have something from EXAIR that isn’t working then I help them figure out why it isn’t working, and we try to get it fixed. Then they would ask things like, if their car is broken they call you, no that’s only when I’m at home. I tell them I also get to test products and see what they can do, even make videos of what our stuff does. Of course, they wanted to know if I made TikToks and I proudly informed them I do not and that most of this stuff is on a website or on YouTube.

The fact is that they know I love to work with my hands and see my work around the house or at other people’s homes on their cars or on their projects. They know that I value my experiences and I always try to have them recall an experience they may have already had when they are struggling with something. The best is when my oldest is learning about heat transfer. First, we did an experiment with my trusty Zippo lighter, so she experienced that holding your hand six inches over a flame you can feel the warmth but underneath you can’t. Then I showed them Vortex Tube Videos. They didn’t find it as cool as I do. (DAD PUN INTENDED!)

Lucky for me, when people are contacting me at work, they generally get excited about seeing compressed air turned into hot and cold air streams without moving parts and being able to solve heat transfer issues quickly and easily. The exact opposite reaction of young children, which helps me not feel like such a nerd.

The point of this story is that I am here to help, it’s one of the key responsibilities I hold as an Application Engineer here at EXAIR. With that, I share all of my experience that comes with over 15 years in the industry and always keep my eyes and ears open when I don’t know something. If you are at a wall with your point-of-use compressed air system or a process in your manufacturing, contact us and see how our bank of experience can help you to determine the best path moving forward.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Maximum Effort!!! The Two Types of Vortex Tube Generators

I am a fan of just about all things MCU (Marvel Cinematic Universe) and have always found Deadpool to be entertaining. Anytime I see a Max Cold Temp or Max Refrigeration mention when discussing or reading about a Vortex Tube I go to a miniature cut scene where Deadpool is saying Maximum Effort as they are fighting the bad guys in Deadpool 2. Enough about my love for MCU, let’s get more into my nerd love for Vortex Tubes.

When it comes to Vortex Tubes and getting the most out of them, EXAIR are the subject matter experts. If you aren’t sure what a Vortex Tube is or how it works, we’ve blogged about that, today’s blog is going to focus more on why you would select a Maximum Cold Temp vs a Maximum Refrigeration Vortex Tube and what actually changes.

Vortex generator

The difference lies in the generator that is inside the Vortex Tube. The reason to choose between the two lies with the application for the tube. In the event that the tube will be used for spot cooling or cooling a small chamber, Maximum Refrigeration generators are desired because you will generally work at a 50% cold fraction or higher. The maximum refrigeration value possible is achieved under set variables such as operating pressure, cold fraction, and incoming compressed air temperature. To see how these effect the cooling performance, check out our blogs on de-rating a Vortex Tube (Part 1Part 2). The bulk of applications that I have worked on over the 10+ years I have been part of EXAIR utilize the Maximum Refrigeration Vortex Tube because customers desire to get a product, small area, or component below ambient air temperatures and are going to be operating in the 50% to 80% cold fraction area in order to provide the performance needed.

EXAIR Vortex Tube Performance Chart

The other small fraction of applications that really need to get the lowest air temperature; in order to get that small component or spot down to -50°F (-46°C) will utilize the Maximum Cold Temperature generators. These will be the 3400 series Vortex Tubes or the “-C” versions. While max cold temperature models are less common, they regularly solve applications for temperature stress testing parts and freeze seals. Maybe you aren’t sure if the Maximum Refrigeration or Maximum Cold Temp is the one you need. That’s where the Application Engineer Team here comes in, hit us up first, and then we can also showcase just how simple it is to change the generator in a Vortex Tube out and give an idea of how many turns out from closed on the Hot Valve you will be to get close to the performance needed.

It truly is just that simple, no internal moving parts, just change out one internal component, and adjust the Hot Valve. To understand how easy that is, check the video below and you can see how big of a swing one can see with adjustments.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Rudolf Hilsch, Shining a Light on the Vortex Tube

The Vortex Tube is also known as the Ranque – Hilsch tube is a device that takes a single source of compressed gas and splits it into two streams a hot and a cold. The Vortex Tube was invented in 1933 by French physicist Georges J. Ranque, however his findings never really went main stream until Physicist Rudolf Hilsch improved the design and published a widely read paper in 1947 on the device, which he called a Wirbelrohr. (Original publication in German can be found here.)

The Original drawing from Rudolf Hilsche’s 1947 Publication.

Compressed air is supplied into the tube where it passes through a set of nozzles that are tangent to the internal counter-bore. The design of the nozzles force the air to spin in a vortex motion at speeds up to 1,000,000 RPM. The spinning air turns 90° where a valve at one end allows some warmed air to escape. What does not escape, heads back down the tube in the inner stream where it loses heat and exhausts through the other end as cold air.

How a Vortex Tube Works

Both streams rotate in the same direction and at the same angular velocity. Due to the principle of conservation of angular momentum, the rotational speed of the inner vortex should increase. However, that’s not the case with the Vortex Tube. The best way to illustrate this is in Olympic Figure Skating. As the skater is wider, the spinning motion is much slower. As she decreases her overall radius, the velocity picks up dramatically and she spins much quicker. In a Vortex Tube, the speed of the inner vortex remains the same as it has lost angular momentum. The energy that is lost in this process is given off in the form of heat that has exhausted from the hot side of the tube. This loss of heat allows the inner vortex to be cooled, where it can be ducted and applied for a variety of industrial applications.

This Vortex Tube theory is utilized in basic Vortex Tubes, along with a variety of other products that have additional features specific for your application. EXAIR’s line of Cabinet CoolersCold GunsAdjustable Spot CoolersMini Coolers, and Vortex Tubes all operate off of this same principle.

If you’re fascinated by this product and want to give it a try, EXAIR offers an unconditional 30-day guarantee. We have them all in stock and ready to ship as well, same day with an order received by 2:00 ET. Feel free to get in contact with us if you’d like to discuss how a vortex-based product could help you in your processes.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Rudolf Hilsche’s Publication Drawing provided by Die Zeitschrift für Naturforschung

(Photo Link https://zfn.mpdl.mpg.de/data/1/ZfN-1946-1-0208.pdf )