Informal Video: Changing the Generator in an Adjustable Spot Cooler

One of our more versatile cooling devices is the Adjustable Spot Cooler.  The temperature can be changed from ambient down to -30 deg. F (-34 deg. C) with a turn of a knob.  In addition to this, the cooling capacity can be modified as well by simply changing the generator.  In this video, I will show you how to do this.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

The Scientific Legacy of James Clerk Maxwell

On June 13, 1831 at 14 India Street, in Edinburgh Scotland James Clerk Maxwell was born. From a young age his mother recognized the potential in James, so she took full responsibility of his early education. At the age of 8 is mother passed away from abdominal cancer, so his father enrolled him in the very prestigious Edinburgh Academy.

10494489114_c59c9170c3_z.jpg

James was fascinated by geometry at a early age, many times learning something before he was instructed. At the age of 13 he won the schools mathematical medal and first prize in both English and poetry. At the age of 16 he starting attending classes at the University of Edinburgh, and in 1850 he enrolled at the University of Cambridge.

 

8784212715_a69700b03f_z.jpg

The largest impact he had on science were his discovery’s around the relationship between electricity, magnetism, and light. Even Albert Einstein credited him for laying the ground work for the Special Theory of Relativity. He said his work was “the most profound and the most fruitful that physics has experienced since the time of Newton.”

Maxwell also had a strong interest in color vision, he discovered how to take color photographs by experimenting with light filters.

But here at EXAIR we are very interested in his work on the theory that a “friendly little demon” could somehow separate gases into hot and cold flows, while unproven in his lifetime, did actually come to fruition by the development of the Vortex Tube.  Which does just that.

How A Vortex Tube Works

So here’s to you, James Clerk Maxwell…may we continue to recognize your brilliance, and be inspired by your drive to push forward in scientific developments.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Photo credit to trailerfullofpix & dun_deagh

Applications for Vortex Tube Spot Cooling

The EXAIR Mini Cooler family is one of the many vortex tube based Spot Cooler products that EXAIR offers.  This is the smallest of the group coming in at 550 BTU/hr of cooling capacity.  The Mini Cooler Systems  are available in two options.

minicoolerWFAM_500
EXAIR’s Mini Cooler is available with a single point hose kit or a dual point hose kit.
  • The Single Point Outlet option will give you ten inches of flexible cold outlet to easily position the cold air stream near the target point.
  • The Dual Point Outlet option gives ten inches of 1/4″ flexible outlet that then splits to two separate four inch lengths of 1/4″ flexible cold outlet hoses.
  • Both include point or flat fan tips for the cold air outlets
  • Both include a manual drain filter separator
  • both include the swivel magnetic base with 100 lb. pull magnet.
minicooler_appli400
The Single Point Mini Cooler with a Flat Fan Tip installed on a milling application where liquid coolant cannot be used due to material constraints.

The single point hose kit is ideal for small diameter milling or drilling applications where the cold air can cover the contact area of the cutter.  It can also be used on soldering, industrial sewing, ultrasonic welding, or even small punching applications to list just a few.

EXAIR’s Mini Cooler System w/ Dual Point Hose Kit keeping UHMW cool while being machined

The dual point hose kit is ideal for two separate small diameter cutters, one larger diameter cutter, rotary style knives where there material is being slit, or larger diameter multi-point ultrasonic welders/punches.

When using the Mini Cooler the adjustable cold outlet stays in place and can easily bend around fixtures, spindles, welding horns, or dye aligning pins.  The swivel magnetic base gives additional adjustment at the base of the cooler to aid in the versatility of this product.   To further the adjustability of the cooler the operating pressure can easily be adjusted to lower or raise the cooling capacity of the Mini Cooler to meet the demands of the precise application.

If you believe you have an application that would benefit from the use of a Mini Cooler, or you are unsure which product would be ideal for your application please contact an Application Engineer.  we are all here, willing to help however possible to get your application improved in both safety and efficiency.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

 

Cold Guns for Spot Cooling or Replacing Mist Systems

By using only a source of compressed air, the Cold Gun and High Power Cold Gun produces a stream of clean, cold air 50°F (28°C) below your compressed air supply temperature. The Cold Gun is very quiet at only 70 dBA and has no moving parts to wear out. Just supply it with clean compressed air and it’s maintenance free.

How does it work, and what are the benefits?

  • The Cold Gun uses compressed air to produce a stream of clean, cold air at 50°F (28°C) below supply air temperature. Generally this will be 20°F-30°F outlet temperature.
  • They use Vortex Tube technology…no moving parts to wear out.

How A Vortex Tube WorksInstant cold air flow with no moving parts!

  • Cold flow and temperature are preset to optimize cooling capability, and are non-adjustable to prevent freeze-up during use.
  • Eliminates the expense of both the purchase & disposal of cutting fluids when replacing expensive mist systems.
  • Removes the potential for health problems associated with breathing mist & vapors, and the safety issue of slipping on a wet floor.

Cold Gun Aircoolant System selection is easy & straightforward…we offer a standard, and a High Power version to meet your specific needs.

CG
Four systems to choose from, to meet most any need.

We also offer Single & Dual Point Hose Kits, to further meet the needs of your application.

One of the best applications I have seen with our cold gun came from a customer in Peru. They are a gold mining operation and they were having trouble with the liquid they were using to cool a saw. Read all about it here!

IMG_20180613_094120_HDR

If you have an application that you believe would be better served by the use of an EXAIR Cold Gun, give us a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Georges J. Ranque and the Vortex Tube

The Vortex Tube was invented by accident in 1928, by George Ranque, a French physics student. He was performing experiments on a vortex-type pump that he had developed for vacuuming iron filings and noticed that warm air exhausted from one end and cold air from the other when he inserted a cone at one end of the tube! Ranque quickly stopped work on the pump, and started a company to take advantage of the commercial possibilities for this odd little device that produced both hot and cold air, using only compressed air, with no moving parts. The company was not successful, and the vortex tube was forgotten until 1945 when Rudolph Hilsch, a German physicist, published a widely read paper on the device.

How A Vortex Tube Works

A vortex tube uses compressed air as a power source, has no moving parts, and produces hot air from one end and cold air from the other. The volume and temperature of the two air streams is adjustable with a valve built into the hot air exhaust.  Temperatures as low as -50°F (-46°C) and as high as 260°F (127°C) are possible.

During the second world war Georges J. Ranque started developing steels that would be used in military aviation efforts. After the war he took a job at  Aubert et Duval steelworks as director of metallurgical laboratory where he continued developing alloys for use in the aviation industry.

In 1972 he published a book on the search for the Philosophers stone, a legendary chemical substance capable of turning base metals such as mercury into gold. And in 1973 he passed away in his home just outside of Paris.

If you have any questions of want more information on how we use our vortex tubes to better processes all over industry. Give us a call, we have a team of application engineers  ready to answer your questions and recommend a solution for your applications.

Jordan Shouse
Application Engineer
Find us on the Web http://www.exair.com/28/home.htm
Follow me on Twitter
Like us on Facebook

Choosing the Right Vortex Tube – Max Refrigeration vs. Max Cold Temperature

The Vortex Tube is a low cost, reliable, maintenance free way to provide cooling to a wide variety of industrial spot cooling problems.

VT_air2

There are two (2) popular uses for the Vortex Tubes.  One is to spot cool a warm item as fast as possible.  The other is to chill an item to as low a temperature as possible. Because these are very different requirements, different Vortex Tube configurations exist to handle each.

For those applications of spot cooling, we recommend the 3200 series of Vortex Tubes. They are designed to be most efficient at providing maximum refrigeration, which is a function of high cold air flow rate and moderate temperature differential of the cold air to the warm item.

And for those applications of chilling an item to a very low temperature at low flow rate , we recommend the 3400 series of Vortex Tubes.  They are designed to be most efficient at providing maximum cold air temperatures, but with a lower cold air flow rate.

An important parameter for the Vortex Tubes is the Cold Fraction.  By adjusting the hot valve on a vortex tube, the amount of air that is discharged through the cold end changes. When expressed as a percentage of the total compressed air that is supplied to the vortex tube, we get the Cold Fraction.  For example, if the hot valve is adjusted so that for every 10 parts of compressed air supplied, we get 7 parts of cold air, then we have a 70% Cold Fraction. When you know the Cold fraction setting and the compressed air supply pressure, you can use the Vortex Tube Performance tables and get the cold air discharge temperature.

Using the table below left, at 100 PSIG compressed air pressure and a 70% Cold Fraction, we can expect the cold air discharge temperature drop to be 71°F.  With 70 ° compressed air temperature, the cold air will be at -1°F.

Vortex Tube Charts
Vortex Tube Performance Tables

The 3200 series of Vortex Tubes are for use in the 50-80% Cold Fraction range, and the model 3400 series is designed for use in the 20-50% Cold Fraction ranges, to maximize the performance of each.

In summary, the selection of the Vortex Tube that best meets the application needs is based on the desired cold air flow rate, and the temperature of air desired. Once these are known, using the tables can provide the information needed to select the best option.

For those applications where we are unsure what will work best, we offer the EXAIR Cooling Kits, that include a Vortex Tube (small, medium, or large) and an array of Generators, to allow the configuration of the full range of Vortex Tubes within each size family.

  • Model 3908 – Small Vortex Tube Cooling Kit – build models 3202, 3204, 3208, and 3402, 3404, 3408
  • Model 3930 – Medium Vortex Tube Cooling Kit – build models 3210, 3215, 3225, 3230, 3240, and 3410, 3415, 3425, 3430, 3440
  • Model 3998 – Large Vortex Tube Cooling Kit – build models 3250, 3275, 3298, 3299, and models 3450, 3475, 3498, 3499

3930

If you have questions about Vortex Tubes or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

People of Interest: Rudolf Hilsch

Vortex Tubes

The EXAIR Vortex Tubes use compressed air to generate a cold air stream at one end and a hot air stream at the other end.  The history behind this phenomenon is rooted in the Ranque-Hilsch tube.  In 1931, a French physicist, Georges Ranque, tried to use a cyclone vortex to separate iron filings from the air.  He noticed that when he capped one end with a slight opening, the air would become very warm.  Being disappointed with the separation, he shelved his patented idea for several years.  In 1946, Rudolf Hilsch picked up this idea from Georges Ranque and “tweaked” the design.  This product has now become known as the Vortex Tube.  In this blog, I will cover Rudolf Hilsch as a person of interest.

Rudolf Hilsch was born in December 18th, 1903 in Hamburg, Germany and died on May26th, 1972.  In 1927, Rudolf received his doctorate at the age of 24.  In 1938, he worked with a colleague, Robert Pohl, to create one of the first working semiconductor amplifier.   From 1941 to 1953, Hilsch was a professor of physics at Erlangen, and in 1947, he published his paper of the Ranque-Hilsch tube which he called the “Wirbelrohr”, or whirl pipe.  This publication became well known and was the start of the Vortex Tube.  To continue on with his career, in 1953, he became a full member of the Bavarian Academy of Sciences.  Also, at that same time, he started teaching physics at the Physics Institute of the Georg August University of Göttingen well into the 1960s.

Inside the Vortex Tube

To expand a bit more into his publication, the design for spinning the air at a high rate of speed can produce a separation of temperatures.  It starts with a generator to help facilitate a vortex.  As the vortex travels toward one end, a portion of that air will travel back through the center toward the opposite end.  (Reference animation above).  As these two vortices interact, conservation of momentum forces the inner vortex to give off energy in a form of heat to the outer vortex.  This separation of temperatures will give you a hot air stream and a cold air stream.  This type of device can do this without any moving parts or Freon.  You just have to supply a compressed gas.

EXAIR manufactures Vortex Tubes that utilize this phenomenon with compressed air.  We stock units with cooling capacities up to 10,200 BTU/hr and can reach temperatures from -50oF to +260oF (-46oC to +127oC).  So, thank you Mr. Ranque and Mr. Hilsch for creating a product to generate hot and cold air in a single unit.  If you would like to discuss any applications where cooling or heating is needed, you can talk with one of our Application Engineers.  We will be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb