3-1/2 EXAIR Pro Tips for Compressed Air Use

EXAIR offers industry leading Intelligent Compresses Air Products. Our products are engineered to comply with all relevant OSHA standards and are CE certified. When you purchase an EXAIR product, be it a Super Air Knife or a brass bulkhead fitting, you are expecting to receive a high quality and high performing product, and you will. If the product is not performing there is a very high probability that the problem is not the product.

So whatever could it be? And how can we fix the issue? Air supply going to the product is a common issue, so first we need to insure that there is a steady flow of the appropriate pressure and volume of air. Even though you may have a 100HP compressor, the distance form the product, the size of the pipes delivering the air, the smoothness of the inside of the pipes (is there internal rust and buildup), leaks and other restrictions of air flow rate all contribute to the overall performance.

A large majority of the product performance issues that are brought to us are caused by insufficient air supply in one form or another. Sometimes this is due to the overall size of the system, but many times it is at the point of use. Let’s assume that you have the right sized compressor to power all features in the shop. These next items are where we would want to focus and correct.

EXAIR Digital Flowmeter

Pro tip #1 – Use EXAIR Digital Flowmeters to monitor your air consumption. You should have a log of how much each compressed air tool / machine uses, and compare that to how much air is traveling down that leg of your facility. Leaks, corrosion, rust, and accidents happen. By monitoring and logging your SCFM in each major leg of your system, you will easily be able to narrow down root problems, and track leaks. You will also have solid answer when asked – “Do you have enough air for this?”.

Pressure Regulators “dial in” performance to get the job done without using more air than necessary.

Pro Tip #2 – Use a Tee Fitting and install a Pressure Regulator with Gauge at the point of use. This allows you to see, and control the pressure for each product. This removes all questions of air pressure at the point of use. Although your system seems large enough, many times the pressure is less at the point of use, due to restrictions, unknown leaks etc… Having the information from tip #1 and #2, you will easily be able to identify if your issue is the system, or the tool.

Pro Tip #2.5 – Turn it down (the pressure) if you can… Operate each compressed air application at a pressure just high enough for your desired result – not necessarily full line pressure. We have discussed in many other blogs how compressed air is your 3rd or 4th highest utility. If you optimize the pressure per application, you can save dollars. As a rule of thumb, if your system is operating at the 100 psig level, lowering the pressure by 2 psig will save 1% of energy used by the air compressor. A great example of this would be our Super Air Knives. Optimal use is at 80 psig, and “X” SCFM (based upon length of the Super Air Knife). At 80 psig and the proper SCFM, this flow will feel like having your hand out the window of your car when you are driving about 50 MPH. Your application may not need that much air flow, to get the job done. Turn it down and test it. Start at 80 psig and using the tools from tip #2, turn it up or down until your needs are met. Many of our products do not need to be used at full pressure to effectively solve your process problem.

Pro tip #3 – Use the proper sized lines, connectors and fittings. Pipe restriction can kill performance. Quick connects can be very problematic. Most quick connects are rated at the same size as the incoming pipe, tube or hose, but may actually have a much smaller inner diameter. As you can imagine, this oversight can cause significant performance issues, and end up costing more lack of production or defective product. Be it a quick connect, or any other connector or fitting, it is imperative not to restrict the air. This will result in problems, and lack of performance.

Please do not hesitate to reach to discuss any performance issues, or find out how we can help.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

The Vortex Tube, Maxwell’s Demon, Hilsch Tube, Ranque Tube: What Exactly is this Device? How Does it Work?

If I were to tell you that I can take a supply of ordinary compressed air and drop its temperature by 50°F with no moving parts and without any type of refrigerant or electrical connection, you might be scratching your head a bit. That is of course unless you’ve been introduced to the wild world of Vortex Tubes. My favorite product among the EXAIR Product Line, the Vortex Tube, does just that. With an ordinary supply of compressed air as the sole power source, and no moving parts, the Vortex Tube converts that airstream into a hot and cold flow that exits from opposite ends of the tube. No magic, witchcraft, or wizardry involved here. Just physics!

The theory all began in the 19th century with the famous physicist and mathematician James Clerk Maxwell. He suggested that since heat involves the movement of molecules, it could be possible to create a device that could distribute hot and cold air with no moving parts with the help of a “friendly little demon” that would sort and separate the hot and cold molecules of air. Not much was done with regard to this or any further advancement until about 61 years later.

In 1928, a French physics student by the name of George Ranque was conducting some testing on a vortex-type pump he had developed. In this testing, he noticed that warm air was exhausting from one end, while cold air was coming out of the other. He dropped his plans for the pump and begin an attempt to exploit this phenomenon commercially. His business ultimately failed, along with the Vortex Tube theory, until 1945 when a German physicist named Rudolph Hilsch published a scientific paper based on the Vortex Tube.

With so many involved, the tube became known by a variety of different names: “Ranque Vortex Tube”, the “Hilsch Tube”, the “Ranque-Hilsch Tube”, and (my personal favorite) “Maxwell’s Demon”. Over the years, it has gained a reputation as a low cost, reliable, and highly effective method for industrial spot cooling and panel cooling applications. While using the tube as a PC cooler isn’t generally recommended, here’s a great video demonstrating the tube in operation from Linus Tech Tips on YouTube:

So how exactly does this thing work? The truth is no one knows for certain, but there is one commonly accepted theory that explains the phenomenon:

Compressed air is supplied into the tube where it passes through a set of nozzles that are tangent to the internal counterbore. The design of the nozzles force the air to spin in a vortex motion at speeds up to 1,000,000 RPM. The spinning air turns 90° where a valve at one end allows some of the warmed air to escape. What does not escape, heads back down the tube in the inner stream where it loses heat and exhausts through the other end as cold air.

Both streams rotate in the same direction and at the same angular velocity. Due to the principle of conservation of angular momentum, the rotational speed of the inner vortex should increase. However that’s not the case with the Vortex Tube. The best way to illustrate this is in Olympic Figure Skating. As the skater is wider, the spinning motion is much slower. As she decreases her overall radius, the velocity picks up dramatically and she spins much quicker. In a Vortex Tube, the speed of the inner vortex remains the same as it has lost angular momentum. The energy that is lost in this process is given off in the form of heat that has exhausted from the hot side of the tube. This loss of heat allows the inner vortex to be cooled, where it can be ducted and applied for a variety of industrial applications.

This Vortex Tube theory is utilized in basic Vortex Tubes, along with a variety of other products that have additional features specific for your application. EXAIR’s line of Cabinet Coolers, Cold Guns, Adjustable Spot Coolers, Mini Coolers, and Vortex Tubes all operate off of this same principle.

If you’re fascinated by this product and want to give it a try, EXAIR offers an unconditional 30 day guarantee. We have them all in stock and ready to ship as well, same day with an order received by 2:00 ET. Feel free to get in contact with us if you’d like to discuss how a vortex-based product could help you in your processes.

Tyler Daniel, CCASS

Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Spot Cooling, Cold Gun Promotion

Like many companies, here at EXAIR we generally always have a promotional offering.  These rotate throughout the months and this month is no different.  The current offering involves the EXAIR Cold Gun Aircoolant Systems.

These spot cooling systems help to reduce cutting fluid use, increase production speeds, increase tool life, and has helped more customers than I know.  One customer in particular is a maintenance worker from a welded tube manufacturer.  This facility had very little amount of downtime permitted due to the high efficiency and high volume of orders.  When a machine went down the maintenance team went in like a trauma team to determine the cause of failure and get it fixed to get the line back up and running. One of the biggest problems they would have is when they would have to dry machine a quick part to get the machine back up and running, this would either ruin tools or they would have to slow down the machining time to get the surface finish and dimensions they truly needed.  After talking with us the team ordered a Single Point Cold Gun Aircoolant System as these parts were generally small enough to tackle with the single cold outlet (larger parts benefit from the dual point hose kit).

They received the spot cooler system in and sure enough a machine went down.  The crew went to work and once the broken part was located they got to work on their lathe trying to make a new piece.  The Cold Gun held itself straight to the headstock thanks to the integrated magnet and the flexible single point hose kit routed the cold air straight to the cutting insert point.  They didn’t have to fill up the liquid tank or setup the mist system on the lathe, they simply turned on the compressed air and let the lathe do the work.  They were able to take what had recently been around a three hour machine job with heavy wear on tooling to a two hour job, no finish pass was needed on the part, and their tools weren’t completely spent by the end of the job.

They got the part back into the machine, made adjustments, and then went to work getting the machine back into production.

Right now, if you would like to try out a Cold Gun Aircoolant System you can order before 12/31/21 and you will receive a free Dual Point Hose Kit with your qualified purchase.

Dual Point Hose Kit

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

EXAIR Cold Gun Overview

In any machining operation, tool wear is an inevitability. Cutting tools heat up due to friction and this heat contributes to premature tool wear. As tooling wears, poor tolerances and dimensional inaccuracy are common. Additionally, as the cutting edge dulls increased cutting force is required which further increases the amount of heat generated.

Coolants can be used to reduce friction and help mitigate some of the wear, but then you’re left with the mess that coolant brings along with it both on the part and in the machine itself. What if I were to tell you that there’s a way to mimic the effects of coolant, but without all of the mess? All of this can be achieved with just a supply of compressed air and one of EXAIR’s Cold Gun Systems.

EXAIR’s Cold Gun was a Product of the Year finalist in 2007. By using only a source of compressed air, the Cold Gun and High Power Cold Gun produces a stream of clean, cold air 50° (28°C) below your compressed air supply temperature. The Cold Gun is very quiet at only 70dBA and has no moving parts to wear out. Just supply it with clean, dry compressed air and it’s maintenance free!

Cold Guns Systems

The Cold Gun is pre-set to an 80% Cold Fraction. In other words, 80% of the compressed air supplied to it will exhaust from the cold end of the tube, 20% from the hot end. This prevents the Cold Gun from freezing up during use and optimizes the gun’s cooling capacity. The Cold Gun is an ideal alternative to messy and expensive coolant mist systems. It eliminates the cost of purchase and disposal of cutting fluids as well as worker related health problems from breathing airborne coolant or slipping on wet floors. Replacing a coolant-based system also eliminates the need for secondary cleaning operations after milling or drilling.

The Cold Gun is an invaluable tool for machining a wide range of plastics and other materials that may become contaminated when using traditional coolants or oils. The clean, cold air from the outlet of the Cold Gun keeps the part cool, clean, and dry. Take for example this application where an OEM for the plastics industry uses EXAIR Cold Guns in place of a coolant system.

If you have an application that you believe would be better served by the use of an EXAIR Cold Gun, give us a call. Get one on order today and take advantage of our limited time promotion and receive a FREE Dual Point Hose Kit upgrade!

Tyler Daniel, Application Engineer

E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD
Ph. 1-800-903-9247 or 1-513-671-3322