Basics of Compressors

Single Stage Portable Air Compressor

What is an air compressor?  This may seem like a simple question, but it is the heartbeat for most industries.  So, let’s dive into the requirements, myths, and types of air compressors that are commonly used.  Like the name implies, air compressors are designed to compress air.  Unlike liquids, air is a compressible gas, which means that it can be “squished” into a smaller volume by pressure.  With this stored energy, it can do work for pneumatic systems.

There are two main types of air compressors, positive displacement and dynamic.  The core component of most air compressors is an electric motor that spins a shaft.  Positive displacement uses the energy from the motor and the shaft to change volume in an area, like a piston in a reciprocating air compressor or like rotors in a rotary air compressor.  The dynamic types use the energy from the motor and the shaft to create a velocity with an impeller like centrifugal air compressors.  This velocity converts to a rise in pressure.

How do they work?  Most air compressors are driven by an electric or gas motor.  The motor spins a shaft to push a piston, turn a rotor, or spin a vane.  At the beginning of the air compressor, we have the intake where a low pressure is generated from the displacement to bring in the surrounding ambient air.  Once trapped, Boyle’s law states that when the volume decreases, the pressure increases.  For the dynamic type, the velocity and design will increase the air pressure.  The higher pressure will then move to a tank to be stored for pneumatic energy.  The amount of power required is dependent on the amount of air that needs to be compressed. 

Compressed air is a clean utility that is used in many ways, and it is much safer than electrical or hydraulic systems.  But most people think that compressed air is free, and it is most certainly not.  Because of the expense, compressed air is considered to be a fourth utility in manufacturing plants.  For an electrical motor to reduce a volume of air by compressing it, it takes roughly 1 horsepower (746 watts) of power to compress 4 cubic feet (113L) of air every minute to 125 PSI (8.5 bar).  With almost every manufacturing plant in the world utilizing air compressors much larger than 1 horsepower, the amount of energy needed to compress a large volume of air is extraordinary.

Let’s determine the energy cost to operate an air compressor to make compressed air by Equation 1:

Equation 1:

Cost = hp * 0.746 * hours * rate / (motor efficiency)

where:

Cost – US$

hp – horsepower of motor

0.746 – conversion KW/hp

hours – running time

rate – cost for electricity, US$/KWh

motor efficiency – average for an electric motor is 95%.

As an example, a manufacturing plant operates a 100 HP air compressor in their facility.  The cycle time for the air compressor is roughly 60%.  To calculate the hours of running time per year, I used 250 days/year at 16 hours/day for two shifts.  So operating hours equal 250 * 16 * 0.60 = 2,400 hours per year.  The electrical rate at this facility is $0.10/KWh.  With these factors, the annual cost for operating the air compressor can be calculated by Equation 1:

Cost = 100hp * 0.746 KW/hp * 2,400hr * $0.10/KWh / 0.95 = $18,846 per year in just electrical costs.

So, what is an air compressor?  The answer is a pneumatic device that converts power (using an electric motor, diesel or gasoline engine, etc.) into potential energy stored as pressurized air.  Efficiency in using compressed air is very important.  EXAIR has been manufacturing Intelligent Compressed Air Products since 1983.  We are able to save you money by reducing the amount of compressed air you use.  If you need alternative ways to save money when you are using your air compressor, an Application Engineer at EXAIR will be happy to help you.  We even have a Cost Savings Calculator to find the annual savings and payback period; and you will be amazed at how much money can be saved. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo: Technical Illustration of a portable single-stage air compressor by Brain S. Elliot.  Creative Commons CC BY-SA 4.0

Fluid Mechanics – Boundary Layer

Fluid mechanics is the field that studies the properties of fluids in various states.  Fluid dynamics studies the forces on a liquid or a gas during motion.  Osborne Reynolds, an Irish innovator, popularized this dynamic with a dimensionless number, Re.  This number determines the state in which the fluid is moving; laminar, transitional, or turbulent.  For compressed air, a value of Re < 2300 will indicate a laminar air flow while the value of Re > 4000 will be in the range of turbulent flow.  Equation 1 below shows the relationship between the inertial forces of the fluid as compared to the viscous forces.

Equation 1:

Re = V * Dh / u

Re – Reynolds Number (no dimensions)

V – Velocity (feet/sec or meters/sec)

Dh – hydraulic diameter (feet or meters)

u – Kinematic Viscosity (feet^2/sec or meter^2/sec)

To dive deeper into the fluid dynamics, we can examine the layer which is next to the surface; the boundary layer.  This could refer to a wing on an airplane, a blade in a turbine, or inside compressed air lines.  In this blog, I will target the boundary layer inside pipes, tubes, and hoses that are used to transport compressed air.  The profile across the area (reference diagram below) is a velocity gradient.  The boundary layer is the distance from the wall or surface to 99% of the maximum velocity of the fluid stream.  At the surface, the velocity of the fluid is zero because the fluid is in a “no slip” condition.  As you move away from the wall, the velocity starts to increase.  The boundary layer thickness measures that area where the velocity is not uniform.  If you reach 99% of the maximum velocity very close to the wall of the pipe, the air flow is turbulent.  If the boundary layer reaches the radius of the pipe, then the velocity is fully developed, or laminar.  Mathematically, laminar flow can be calculated, but turbulent flow requires theories and experimental data to determine. 

As an analogy, imagine an expressway as the velocity profile, and the on-ramp as the boundary layer.  If the on-ramp is long and smooth, a car can reach the speed of traffic and merge without disrupting the flow.  This would be considered Laminar Flow.  Now imagine an on-ramp to be perpendicular to the expressway. As the car goes to merge into traffic, it will cause chaos and accidents.  This is what I would consider to be turbulent flow.     

In a compressed air system, similar things happen within the piping scheme.  Valves, tees, elbows, pipe reducers, filters, etc. are common items that will disrupt the flow.  Let’s look at a scenario with the EXAIR Digital Flowmeters.  In the instruction manual, we require the meter to be placed 30 pipe diameters from any disruptions.  The reason is to get a laminar air flow for accurate flow measurements.  In order to get laminar flow, we need the boundary layer thickness to reach the radius of the pipe where 99% of the air speed is represented at the center. 

Why is this important to know?  In many compressed air applications, the laminar region is the best flow to generate a strong force; efficiently and quietly.  Allowing the compressed air to have a more uniform boundary layer will optimize your compressed air system.  And for the Digital Flowmeter, it helps to measure the flow accurately and consistently.  If you would like to discuss further how to reduce “traffic jams” in your process, an EXAIR Application Engineer will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com

Twitter: @EXAIR_jb

Photo: Smoke by SkitterphotoPixabay license

CFM, ICFM, ACFM, SCFM: Volumetric Flow Rates Explained

Flow rate is the quantity of material that moves over a period of time.  Generally, the quantity of material can be expressed as a mass or a volume.  For example, mass flow rates are generally in units of pounds per minute (lbs./min) or kilograms per hour (Kg/hr).  Volumetric flow rates are stated in cubic feet per minute (CFM) or liters per hour (LPH).  The trick begins when volumetric flow rates are used for a compressible gas.  In this blog, I will go over the various acronyms and the reasons behind them.

What acronyms will be covered?

CFM – Cubic Feet per Minute

SCFM – Standard Cubic Feet per Minute

ACFM – Actual Cubic Feet per Minute

ICFM – Inlet Cubic Feet per Minute

The volumetric component of the flow rate above is CFM or Cubic Feet per Minute.  This term is commonly used in rating air compressors and pneumatic equipment.  From their history, they would calculate the volume of air being drawn into the air compressor by the size of cylinder.  With the rotations per minute of the motor, RPM, they could calculate the volumetric flow rate.  As conditions change like altitude, temperature, and relative humidity, the value of CFM changes.  To better clarify these conditions, compressor manufacturers decided to add terms with definition.  (For your information, air compressors still use CFM as a unit of air flow, but now this is defined at standard temperature and pressure).

The first letter in front of CFM above now defines the conditions in which the volumetric air flow is being measured.  This is important for comparing pneumatic components or for properly sizing pneumatic systems. Volume is measured by three areas: temperature, pressure, and relative humidity as seen in the Ideal Gas Law.

Equation 1:

V = n * R * T / P

V – Volume

n – Number of molecules of gas

R – Universal Gas Constant

T – Absolute Temperature

P – Absolute Pressure

The volume of air can change in reference to pressure, temperature, and the number of molecules.  Where is the relative humidity?  This would be referenced in the “n” term.  The more water vapor, or higher RH values, the less molecules of air is in a given volume.

SCFM is the most commonly used term, and it can be the most confusing.  The idea of this volumetric air flow is to set a reference point for comparisons.  So, no matter the pressure, temperature, or relative humidity; the volumetric air flows can be compared to each other at one reference point.  There have been many debates about an appropriate standard temperature and pressure, or STP.  But as long as you use the same reference point, then you can still compare the results.  In this blog, I will be using the Compressed Air and Gas Institute, CAGI, reference where the “Standard” condition is at 14.5 PSIA, 68oF, and 0% RH.  Since we have the reference point, we still need to know the actual conditions.  As an example, it is like having a location for a restaurant as a reference, but if you do not know your current location, you cannot reach it.   Similarly, we are “moving” the air from one condition to a reference or “Standard” condition.  We will need to know where the air began in order to reach that reference point.  We will talk more about this later in this blog.

ACFM is the volumetric air flow under actual conditions.  This is actually the “true” flow rate.  Even though this term is hardly used, there are reasons why we will need to know this value.  We can resize an air compressor that is not at “Standard” conditions, and we can use this value to calculate velocities and pressure drop in a system.  We can correlate between SCFM and ACFM:

Equation 2:

ACFM = SCFM * [Pstd / (Pact – Psat Φ)] * (Tact / Tstd)

Where:

ACFM = Actual Cubic Feet per Minute
SCFM = Standard Cubic Feet per Minute
Pstd = standard absolute air pressure (psia)
Pact = absolute pressure at the actual level (psia)
Psat = saturation pressure at the actual temperature (psi)
Φ = Actual relative humidity
Tact = Actual ambient air temperature (oR) or (oF + 460)
Tstd = Standard temperature (oR) or (oF + 460)

ICFM, or Inlet Cubic Feet per Minute, is one of the newest terms in the history of air compressors.  This is where devices are added to the inlet of an air compressor, affecting the flow conditions.  If you have a blower on the inlet of an air compressor, the volumetric flow rate changes as the pressure and temperature rises at the “Inlet”.  If an intake filter is used, then the pressure drop will decrease the incoming pressure at the “Inlet”.  These devices that affect the volumetric flow rate for an air compressor should be considered.  Equation 3 shows the relationship to ACFM and ICFM:

Equation 3:

ICFM = ACFM * (Pact / Pf) * (Tf / Tact)

Where:

ICFM = Inlet Cubic Feet Per Minute

ACFM = Actual Cubic Feet per Minute

Pf  = Pressure after filter or inlet equipment (PSIA)

Tf = Temperature after filter or inlet equipment (°R)

To expand on my explanation above about SCFM and ACFM, a technical question comes up often about the pressure when using SCFM.  The reference point of 14.5 PSIA is in the definition of SCFM.  Remember, this is only a reference point.  The starting location is actually needed.  This would be the ACFM value where the air values are true and actual.  As an example, two air nozzles are rated for 60 SCFM.  An EXAIR Super Air Nozzle, model 1106, is cataloged at 80 PSIG, and a competitor is cataloged at 60 PSIG.  By comparison, they look like they use the same amount of compressed air, but do they actually?  To simplify Equation 2 above, we can compare the two nozzles at the same temperature, 68oF, and 0% RH. This equation can be reduced to:

Equation 4:

ACFM = SCFM * 14.5 / (P + 14.5)

@60 PSIG Competitor:

ACFM = 60 SCFM * 14.5 PSIA/ (60 PSIG + 14.5 PSIA)

= 11.7 ACFM

@80 PSIG EXAIR Super Air Nozzle:

ACFM = 60 SCFM * 14.5 PSIA / (80 PSIG + 14.5PSIA)

= 9.2 ACFM

Even though the SCFM rating is the same but at two different pressures, the actual flow shows that you are using 21% more compressed air with the competitive nozzle. 

Another example would be for sizing an air compressor.  Since air compressors are rated at sea level (14.5 PSIA), 68oF and 0% RH, what happens if you are in Denver?  A manufacturing company was needing a 500 SCFM air compressor to run their plant.  They were located at 1,000 feet above sea level with a site temperature of 85oF and a relative humidity of 60%.  Since they were not at the standard conditions, we can calculate the ACFM to properly size the air compressor.  The atmospheric pressure at 1,000 feet was 14.2 PSIG.  The saturation pressure at 85oF is 0.595 PSIA.  From Equation 2, we can calculate the ACFM.

ACFM = SCFM * [Pstd / (Pact – Psat Φ)] * (Tact / Tstd)

ACFM = 500 SCFM * [14.5 / (14.2 – 0.595 * 60%)] * [(85oF + 460) / (68oF + 460)]

ACFM = 500 SCFM * 1.0474 * 1.0322

ACFM = 540

For this manufacturing plant, they will need to increase the capacity to 540 SCFM to run their 500 SCFM pneumatic system at their location.   

When it comes to rating compressed air products or air compressors, always ask the conditions of the pressure, temperature and RH.  The more you know about volumetric flow rates, the better decision that you can make in selecting the correct product.  If you need any help in selecting point-of-use blow-off devices, you can contact an Application Engineer at EXAIR.  We will be happy to help you. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo: Air sign by Barney MossCreative Commons 2.0

Video Blog: Chip Shield Kits

I have seen over the years where OSHA inspectors has visited manufacturing plants for violations.  One of the more common areas that they review are compressed air guns because many of them are very dangerous for Dead-End pressure and noise levels.  All of EXAIR Safety Air Guns are OSHA compliant.  But there is an additional OSHA guideline 1910.242(b) that deals with Chip guarding and shields for cleaning purposes.  With these types of applications, EXAIR offers Chip Shields; either as an option with our Safety Air Guns; or as Chip Shields only, or as a Chip Shield kit.  In this video, I will go over the Chip Shield Kits that will add a chip shield to your existing EXAIR Safety Air Gun.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb