The Strength of the 1” High Power Flat Super Air Nozzles

1″ Flat Super Air Nozzles

A casting company used a die casting process to make large aluminum panels. In their operation, a two-part die would clamp together and be filled with hot liquid aluminum. Once the panel was formed and cooled, the die would open to release the part. Before the next panel was die casted, they would use a home-made cart to cool and clean the dies. The cooling was done first by spraying water onto the surface, then compressed air was used to dry the dies. When they started to use their home-made cart in their process, they noticed that the air pressure would begin to drop in their facility. Other locations in the plant started having problems with their pneumatic equipment.   They were using too much compressed air during the drying period; so, they contacted EXAIR to see if we could help reduce the amount of compressed air to dry the dies.

To explain a little more about the home-made cart, it was made from a 1” square piece of tubing that was bent in a U-shape. The dimension of the cart was about 40” long and 24” high. Across the top was a piece of extruded aluminum spanning the two ends of the U-shape tubing. This portion of the cart would supply the water to the liquid nozzles. The liquid nozzles hung vertically down from the extruded aluminum at designated heights to target certain areas of the dies. The U-shaped square tubing was used to supply the compressed air to the blow-off nozzles. The compressed air inlets were welded onto each end of the 1” square tubing. Across the bottom of the cart, the 1” square tubing had 38 holes that were drilled and tapped to 1/8” NPT (19 tapped holes on each side). The blow-off nozzles were 1/8” pipes with the ends smashed (reference picture below). They were made to different lengths to get as close to the die for maximum blowing force. The entire home-made assembly was attached to a robotic fixture with a cam to move the large cart between the dies. In applications using “smashed” pipes, they are very easy and inexpensive to make. But, as this customer found out, they use way too much compressed air and they are not as effective in blowing-off or drying.

Part of cart with 1/8″ flattened pipe

The customer above was limited to modifications to the home-made cart. It was already configured with the robot features and cam to hit the targeted areas. So, I recommended the model HP1126, 1” High Power Flat Super Air Nozzle. It has a 1” wide air stream that is very similar to the flow pattern of the 1/8” smashed pipe. But unlike the smashed pipe design, the model HP1126 nozzle can accomplish so much more. One of the biggest differences is that the EXAIR nozzles use much less compressed air. (The initial reason for contacting EXAIR). With the engineered design of the nozzle, it can entrain large amounts of ambient air which means that less compressed air is required. For a 1/8” NPT smashed pipe, it can use close to 70 SCFM of air at 80 PSIG – each!

The model HP1126 only requires 17.5 SCFM at 80 PSIG. That is a difference of 52.5 SCFM per nozzle. With 38 nozzles being used on this home-made cart, that equates to a total savings of 1,995 SCFM of compressed air. By simply replacing the 1/8” smashed pipe to a model HP1126 with a shorter nipple, their facility was able to save much compressed air and maintain the pneumatic requirements in the other work areas.

The customer was extremely happy with the air savings, but they asked about the amount of force that the model HP1126 can supply. It was important in their process to remove any residual water from the dies. The reason for the blow-off pipes to be so close to the die was to try and increase the blowing force. The best way that I could explain to them was by using an example of a garden hose. (Reference a blog by Neal Raker “Sometimes Back Pressure is Good; Sometimes it is Bad“).  The garden hose is attached to a spigot outside your house. As you open the spigot to supply water through the hose, the water will flow out of the hose at a slow velocity; not very strong. When you place your thumb partially over the end of a garden hose, you restrict the flow and increase the force. Now, you can reach the second-floor windows of your house to clean. With a lack of restriction at the end of the pipes, the air pressure will drop quickly as it travels through the long square tube and through the 1/8” pipe extensions. By the time the compressed air reaches the blow-off site, the pressure is much lower; thus, reducing the effectiveness of removing the water.

The EXAIR nozzles work like your thumb on the hose. The usable pressure is increased at the HP1126 nozzle, instead of a point much further upstream. By increasing the pressure at the point-of-use, the effective velocity and force is much stronger. In addition to this, they can now move the nozzles away from the die surface; in case of any “hiccups” in moving the cart in and out of the dies and eliminating any marring of the surfaces.

Once they installed the 38 pieces of the model HP1126 nozzles onto their cart, the first thing that they noticed was the amount of noise reduction. The model HP1126 only has a noise level of 82 dBA at 80 PSIG, compared to a noise level of an open pipe which is over 100 dBA. By replacing the flattened nozzles with the EXAIR nozzles, this company was able to…
1. reduce air consumption
2. keep the other areas of the plant operating by conserving compressed air at this location
3. reduce the noise level and
4. increase the effective blowing force

If you find that by using your blow-off/drying system, your pneumatic machines under-perform, or the low-pressure alarms are triggered, or you have to turn on an auxiliary compressor, you should contact an Application Engineer at EXAIR to see if we can optimize your compressed air devices. These EXAIR engineered nozzles can remove many issues in your system as it did with the casting company above.

 John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Air: What is it?

Air Balloons

What is Air? Air is an invisible gas that supports life on earth. Dry air is made from a mixture of 78% Nitrogen, 21% Oxygen, and 1% of remaining gases like carbon dioxide and other inert gases.  Ambient air contains an average of 1% water vapor, and it has a density of 0.0749 Lbs./cubic foot (1.22 Kg/cubic meter) at standard conditions.  Air that surrounds us does not have a smell, color, or taste, but it is considered a fluid as it follows the rules of fluid dynamics. But unlike liquids, gases like air are compressible.  Once we discovered the potential of compressing the surrounding air, we were able to advance many technologies.

Bellows

Guess when the earliest air compressor was used?  Believe it or not, it was when we started to breathe air.  Our diaphragms are like compressors.  It pulls and pushes the air in and out of our lungs.  We can generate up to 1.2 PSI (80 mbar) of air pressure.  During the iron age, hotter fires were required for smelting.  Around 1500 B.C., a new type of air compressor was created, called a bellows.  You probably seen them hanging by the fireplaces.  It is a hand-held device with a flexible bag that you squeeze together to compress the air.  The high stream of air was able to get higher temperature fires to melt metals.

Then we started to move into the industrial era.  Air compressors were used in mining industries to move air into deep caverns and shafts.  Then as the manufacturing technologies advanced, the requirements for higher air pressures were needed.  The stored energy created by compressing the air allowed us to develop better pneumatic systems for manufacturing, automation, and construction.  I do not know what the future holds in compressed air systems, but I am excited to find out.

Since air is a gas, it will follow the basic rules of the ideal gas law;

PV = nRT  (Equation 1)

P – Pressure

V – Volume

n – Amount of gas in moles

R – Universal Gas Constant

T – Temperature

If we express the equation in an isothermal process (same temperature), we can see how the volume and pressure are related.  The equation for two different states of a gas can be written as follows:

P1 * V1 = P2 * V2  (Equation 2)

P1 – Pressure at initial state 1

V1 – Volume at initial state 1

P2 – Pressure at changed state 2

V2 – Volume at changed state 2

If we solve for P2, we have:

P2 = (P1 * V1)/V2  (Equation 3)

In looking at Equation 3, if the volume, V2, gets smaller, the pressure, P2, gets higher.  This is the idea behind how air compressors work.  They decrease the volume inside a chamber to increase the pressure of the air.  Most industrial compressors will compress the air to about 125 PSI (8.5 bar).  A PSI is a pound of force over a square inch.  For metric pressure, a bar is a kg of force over a square centimeter.  So, at 125 PSI, there will be 125 pounds of force over a 1” X 1” square.  This amount of potential energy is very useful to do work for pneumatic equipment.  To simplify the system, the air gets compressed, stored as energy, released as work and is ready to be used again in the cycle.

Air Compressor

Compressed air is a clean utility that is used in many different applications.  It is much safer than electrical or hydraulic systems.  Since air is all around us, it is an abundant commodity for air compressors to use.  But because of the compressibility factor of air, much energy is required to create enough pressure in a typical system.  It takes roughly 1 horsepower (746 watts) of power to compress 4 cubic feet of air (113L) to 125 PSI (8.5 bar) every minute.  With almost every manufacturing plant in the world utilizing compressed air in one form or another, the amount of energy used to compress air is extraordinary.  So, utilizing compressed air as efficiently as possible is mandatory.  Air is free, but making compressed air is expensive

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Products, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Picture: Hot Air Rises by Paul VanDerWerf. Creative Commons Attribution 2.0 Generic.

Picture: Bellows by Joanna Bourne. Creative Commons Attribution 2.0 Generic.

Picture: Air Compressor by Chris Bartle. Creative Commons Attribution 2.0 Generic.

Intelligent Compressed Air: Deliquescent Dryers – What are They and How do They Work?

EXAIR has written blogs about the different types of dryers that are used to remove liquid from compressed air systems. In this blog, I will be discussing the deliquescent dryer. This dryer falls under the desiccant dryer category, and unlike the regenerative cousins, it is the least commonly used type of dryer. The regenerative desiccant dryers use a medium that will adsorb the water vapor, and the deliquescent dryers use a hygroscopic material that will absorb the water vapor. This salt-like medium has a strong affinity for water, and it comes in a tablet or briquette form. Placed inside a single unit pressure vessel, the “wet” compressed air passes through the bed to become dry. The size of the pressure vessel is determined by the compressed air usage which allows for the proper amount of contact time with the hygroscopic bed. Generally, the dew point will be between 20 to 50 deg. F (11 – 28 deg. C) less than the compressed air inlet temperature. Unlike most dryers, the dew point after deliquescent dryers will vary with the inlet air temperatures.

Vessel Design

The design of vessel is very important for the function of a deliquescent dryer. A grate is required to hold the medium off the bottom. The compressed air will flow from the bottom, up through the bed, and out from the top. The predetermined space between the bed and the bottom of the vessel is used for the liquid that is generated. When “wet” compressed air passes through the bed, the hygroscopic material will absorb the water and change the tablets from a solid into a liquid. Deliquescent dryers got the name from the definition of the verb, “deliquesce” which is “becomes liquid by absorbing moisture from the air”. Once the material is turned into a liquid, it cannot be regenerated. The liquid must be discarded periodically from the vessel and new solid material must be added. With the single tower design, the deliquescent dryers are relatively inexpensive.

Some advantages in using the deliquescent dryers are that they do not require any electricity or have any moving parts. So, they can be used in remote locations, rugged areas, or hazardous locations. They are commonly used to reduce the dew point in compressed air, natural gas, landfill gas and biogas systems. Without the ability for regeneration, no additional compressed air will be lost or used. In comparing the power requirement to other compressed air dryers, the deliquescent dryers have the lowest power requirement at 0.2Kw/100 cfm of air. (This energy rating is only due to the additional power required for the air compressor to overcome the pressure drop in the dryer).

Some disadvantages in using the deliquescent dryers is that the hygroscopic material degrades. The deliquesced liquid does have to be drained and disposed, and new material does have to be added. Even though they do not have any moving parts, they still require periodic maintenance. The deliquescent material can be corrosive. So, after-filters are required to capture any liquid or dust material that may carry over and damage downstream piping and pneumatic components. Also, the variation in the dew point suppression can limit locations and areas where it can be used.

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Products, you can contact an Application Engineer at EXAIR. We would be happy to hear from you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photos:  used from Compressed Air Challenge Handbook

2” Flat Super Air Nozzles Separate Sheets of Metal Film

Heat Exchanger plates

An overseas company manufactures brazed plate heat exchangers. This type of heat exchanger has a series of corrugated plates that are stacked onto each other. It is designed to create a turbulent flow for better heat transfer in a very compact size. The plates inside the heat exchanger are made of 321 stainless steel which is basically a 304 type of stainless steel but with a titanium stabilizer. This company would receive plain sheets of stainless steel material that were stacked on each other in a column. The dimensions of the plates were as follows: 305mm wide by 520mm long with a thickness of 0.5mm (12” Wide X 20.5” Long X 0.02” thick respectively). Each sheet weighed 635 grams (1.4 lbs.). They would set a stack of the stainless-steel sheets at the beginning of a press machine. The press machine would form the corrugated design into the face of the sheet. They were using a pick-and-place vacuum system to lift one sheet at a time to place inside the press. They started having problems with their process when occasionally two or three sheets would stick together. The underlying sheet could either fall onto the floor which would bend the sheet or be stacked inside the press which would cause an improper corrugation. Both issues were causing much scrap as well as downtime in their process .

They contacted EXAIR to find a way to improve the efficiency of their process. They wondered if static could be causing the “sticking” issues. Generally, static forces are really noticed with sheets made of plastic or non-conductive materials. The stronger the static force, the more issues with sticking and misalignment. EXAIR does offer Static Eliminators to remove static forces in applications just like this. But, with plain metal sheets, static is not a problem as the ions are able to balance themselves.

Typically, the main cause for metal sheets to “stick” together is surface tension. Liquid like water has a strong affinity to itself within the molecular structure, called cohesion, and to the surface that it lies on, called adhesion. The cohesion plus the adhesion to the metal surface can have a strong enough force to overcome the weight of the sheets. To break the surface tension, an additional force is required.  An example of surface tension is with nylon tent material. The surface tension of water is strong enough to keep rain drops from penetrating the fabric. If you break the surface tension by touching the tent material, the surface will start to leak water. The same goes for the thin sheets of metal. We just need to break the surface tension to allow the sheets to separate.

2″ Flat Super Air Nozzle

I recommended two pieces of the model 1122, 2” Flat Super Air Nozzles. This nozzle gives a flat air pattern to force air between the sheets. Surface tension is based on force over length. Once the sheets start to separate, the contact length will decrease thus reducing the “sticking” force caused by surface tension. In this application, the amount of cohesion and adhesion forces caused by surface tension were unknown. Oil, water, and other liquids have different surface tensions which would require different amounts of blowing forces. To ensure the proper amount to separate the sheets, I recommended the shim set, model 1132SS.

The shims have different thicknesses that can be installed easily into the 2” Flat Super Air Nozzle to change the amount of blowing force.  In conjunction with a regulator, this customer could “dial” in the proper amount of force required to counteract the surface tension from any type of liquid that may be on the surface of the sheets.  I had them mount one nozzle at two different corners to help “peel” the sheets apart. The customer also tied in a solenoid valve into the compressed air system to cycle on the 2” Flat Super Air Nozzles only during the time when the vacuum system wanted to grab the top sheet. This reduced the amount of compressed air needed for their operation.  After the installation, the procedure ran smoothly without downtime and scrap waste.

If your application is creating scrap and downtime caused by sheets sticking together, EXAIR has many types of products to help eliminate this. Whether the “stickiness” is caused from static or liquid adhesion, an Application Engineer can direct you to the best product to eliminate the “stickiness”. For the overseas company above, we were able to apply a sharp flat burst of air to overcome the surface tension between the sheets.

John Ball
International Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Heat Exchanger Plates by epicbeerCreative Common by 2.0

 

EXAIR Safety Air Gun Accessories Improve Effectiveness and Safety

Safety Air Gun with accessories

EXAIR offers 5 different styles of Safety Air Guns; Precision, VariBlast, Soft Grip, Heavy Duty and Super Blast.   You can read more about the different styles of Safety Air Guns from a previous EXAIR blog “Not All Compressed Air Guns Are The Same” written by Justin Nichol. I will be targeting the accessories that can enhance the features of the EXAIR Safety Air Guns. These additions will make the Safety Air Guns more dynamic without sacrificing safety, efficiency, or durability.

Precision Safety Air Gun with Chip Shield
eg. 1408SS-CS

Chip Shields:

OSHA 1910.242(b) requires chip guarding when compressed air is used for cleaning. EXAIR offers Chip Shields with our Safety Air Guns to meet this requirement. They are made from a polycarbonate disc which is practically unbreakable and protects the operator from any blow back of metal shavings or coolant. They come with a durable rubber grommet that squeezes onto the extensions and can be adjusted to maximize protection. We offer Chip Shields for the Precision, VariBlast, Soft Grip, and Heavy Duty Safety Air Guns with or without aluminum extensions.

Heavy Duty Safety Air Gun with extension.
eg. 1350-72

Extension Pipes:

For those far away targets and hard-to-reach areas, EXAIR offers aluminum extension pipes to attach to the Safety Air Guns. They can range from 6” (15 cm) to 72” (183 cm) in length. This light-weight and durable material allows for easy handling to reach high above your head or to span across unsafe areas. With the EXAIR air nozzles at the end, the blowing force is not sacrificed as the back pressure will generate a high velocity air stream. The aluminum extensions are offered with the Variblast, Soft Grip, and Heavy Duty Safety Air Guns. The Super Blast Safety Air Guns has the option for two different lengths of extensions, 3 feet (91cm) and 6 feet (183 cm).

Soft Grip Safety Air Gun with Stay Set Hose.
eg. 1210-6SSH

Stay Set Hose:

In certain situations, you may need a way to blow air around a corner or in a tight space. The Stay Set Hose gives you that possibility of manually adjusting or re-adjusting the nozzles to target the correct areas. The hose has a “memory” function, and it will not creep or droop until you physically move it again. They come in lengths from 6” (15cm) to 36” (91cm), and they are offered with the Soft Grip and the Heavy Duty Safety Air Guns.

Coiled Hose

Coiled Hoses:

To get the proper amount of compressed air from the piping system to the Safety Air Guns, EXAIR offers a series of Coiled Hoses. They are made of a durable abrasion-resistant nylon material that is 12 feet long (3.6 meters). They have swivel fittings to allow for easy uncoiling, and a spring strain relief to keep the hose from kinking at the ends. The coiled design makes it easy to reach around the work area and retract back to the substation. This will help to keep the hose off the ground where potential dangers could occur. We offer 3 different connection sizes of 1/8” NPT, ¼” NPT, and 3/8” NPT. They can be used with our Precision, VariBlast, Soft Grip, and Heavy Duty Safety Air Guns. With the proper size, the Coiled Hoses can connect easily to the Safety Air Guns and supply the required amount of air with a minimal amount of pressure drop.

Regulator and Filter

Filter Separators/Regulators:

To improve the use of the Safety Air Guns, EXAIR offers a series of filters and regulators. The filters will remove dirty particles and liquid water from the compressed air that can affect the performance of the Safety Air Gun as well as contaminate the surface that you are cleaning. The regulators can control the amount of air pressure used for the Safety Air Gun; making them even more efficient. The idea for compressed air savings is to use the least amount of compressed air to do the job. If you only need 40 PSIG (2.8 Bar) to blow off an area, then you can save almost 40% of your compressed air as compared to doing that same job at 80 PSIG (5.5 Bar). The combination of a filter and regulator will allow you to control the proper amount of clean dry air to be used.

 

All of our Safety Air Guns are fitted with our engineered Air Nozzles  which make them OSHA compliant for noise and dead-end pressure. With the accessories, you can optimize the use of the Safety Air Guns to better fit your application. If you need help in determine the correct Safety Air Guns and accessory items, you can contact an Application Engineer for help. If you are within the U.S. or Canada, you can take advantage of our 30-day unconditional guarantee to trial any of our stocked Safety Air Guns.

John Ball
Application Engineer
Email: mailto:johnball@exair.com
Twitter: @EXAIR_jb

Super Air Wipe Helps Shield a Lens

Super Air Wipe Kit

A tier 2 automotive company makes small metal boxes with a process which includes laser welding and a vision inspection system. The machine was programmed to weld different components onto the metal enclosure. During the welding operation, an optical sensor would check the quality of the welds. The vision system used a lens to protect the sensor from welding slag and debris. After a few operations, they started seeing false positives in the welding areas, and the metal enclosure would be flagged for rejection. In investigating the issue, they found that the lens was getting dirty from the welding operation. Because of the sensitivity of the sensor, it would detect the debris and marks on the lens and signal for poor weld. The lens was doing its part in protecting the sensor from damage; but, they needed a way to shield the lens from dirt and slag during the welding operation and visual inspection.

With this process, the machine would weld metal fasteners onto an enclosure by laser. The optical sensor would move along the welded areas to check the quality. In a lead/lag operation, the vision system would check the welds after a few seconds of cooling. So, both operations were occurring at the same time but at different intervals. When they started to see the rejection rate increase, they would have to stop the operation, clean the lens, and verify the integrity of the welds. In some cases, they would have to replace the 1 ¼” diameter lens especially if a piece of welding slag marred the surface. With incorrect rejections and lens cleaning, downtime was hurting their production rates and cost.

This customer wanted to use compressed air because it is a powerful and invisible way to create a shield. Since EXAIR is a leader in efficient and effective ways to use compressed air, they contacted us for help. Initially, I suggested a Super Air Knife to deflect any slag and debris from the lens surface. I showed a prior solution to a very similar issue; “Air Shielding a Laser Lens” (Reference below). But, because of the proximity to the part and the limitation in space, the Super Air Knife  configuration in the solution below would make it impossible to use. They were looking for a product that could be mounted either flush or behind the surface of the lens and still protect it.

Air Shielding a Laser Lens

To accommodate for this request, we had to direct the compressed air stream at an angle. EXAIR manufacturers a product that can do just that, the Super Air Wipe. The design of the Super Air Wipe blows compressed air at a 30-degree angle toward the center in a 360-degree air pattern, just like a cone. It can be placed around the lens and still be able to create a “wall” of air to block any slag or debris from hitting the lens.

I recommended the model 2452SS, 2” Super Air Wipe Kit. This Super Air Wipe has the body, braided hose, hardware, and shims that is made from stainless steel. It can handle the high heat loads from the welding process as well as to allow for easy cleanup after a day of operating. The kit includes a filter, to keep the compressed air clean; a regulator, to finely tune the force requirement; and a shim set. The shim set includes two additional sets of shims that can be added to increase the force of protection if needed. With the kit, the customer can “dial” in the correct amount of force needed to keep the lens clean without using excessive amount of compressed air.

As an added benefit of saving compressed air, the Super Air Wipe uses the Coanda effect to maximize the entrainment of ambient air into the compressed air stream. This makes the unit very efficient and very powerful. The Super Air Wipe was mounted just behind the lens like the customer required (Reference mock picture below), and the sensor could examine the welds without any interference with the metal enclosure.

Laser Lens mock drawing

Visual inspections systems are highly accurate pieces of equipment, and a dirty lens will affect the performance. EXAIR has many ways to keep the lens clean with a non-contact invisible barrier to protect sensors, cameras, and lasers. If you have a similar application, you can contact an Application Engineer to determine the best way to keep the lens clean and your equipment functional. After mounting the Super Air Wipe, the customer above eliminated any false rejections, and dramatically decreased any downtime for cleaning or replacing the lens in his welding machine.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

High Vacuum (Non-porous) and Low Vacuum (Porous) E-Vacs: Vacuum Generator Overview

In-Line E-Vac

With the amount of energy in compressed air, EXAIR can manipulate it by design for a variety of applications. One way that we can do this is by creating a vacuum pressure by the Venturi effect. By increasing the velocity of air through a constricted area, a low pressure, or vacuum, is created. Unlike a mechanical vacuum pump, the E-Vac does not have any moving parts or motors to wear. This maintenance free device uses only compressed air to generate a powerful vacuum pressure in a very compact and lightweight design. They can create vacuum levels up to 27” Hg (91 kPa) where complete vacuum is at 29.92” Hg (101.4 kPa). With our single stage systems, we can generate different vacuum levels and flows to create the optimal vacuum generation for your application.

Have you ever placed your hand over the hose of a vacuum? You can feel the maximum amount of vacuum pressure on your hand. The maximum vacuum pressure value is only at the condition of zero air flow. When you remove your hand from the hose, you change the vacuum pressure to a much lower value, but now you have the maximum amount of air flow. Like the E-Vacs, EXAIR has designed the product to either give you the maximum vacuum pressure or the maximum vacuum air flow. EXAIR separates these two vacuum generators as High Vacuum and Low Vacuum.

The high vacuum style is designed for non-porous products like glass, marble, and steel sheets. The low vacuum style is for porous products like cardboard, fabric, and plywood. Both types of vacuum generators are commonly used to pick and place parts, open bags, evacuate molds, and vacuum forming. They are easily adjusted by a regulator and a solenoid valve making the E-Vac very versatile. Even with no moving parts, these vacuum generators are quick to respond with very long cycle rates. The inline design makes them easy to install, so, you can begin using this vacuum product without much setup time. With the single stage design, it eliminates any vacuum fluctuation. I will go through both types of E-Vacs to explain the advantages in using these kinds of vacuum generators for different applications.

The High Vacuum Generator is used for non-porous products in pick and place applications as well as vacuum forming, clamping, and evacuation. This type of generator can create a vacuum pressure up to 27” Hg (91 kPa). In conjunction with the EXAIR vacuum cups, it allows for maximum holding capacity for heavy materials. We offer 7 different sizes ranging from 2 SCFM (65 SLPM) to 31 SCFM (872 SLPM) at 80 PSIG (5.5 Bar). They can be matched to the size and quantity of vacuum cups for increased efficiency as well as for improved cycle rates. If the surface of a rigid sheet is smooth or the application requires a high vacuum pressure, the High Vacuum E-Vac Generator would be the best product to use.

The Low Vacuum Generator is used for porous products as well as more delicate surfaces. This generator has a maximum vacuum pressure of 21” Hg (71 kPa). The design is such to allow for maximum air flow to make up any losses through the material or sealing area. With a regulator, you can control the maximum vacuum level to eliminate dimpling or disfiguring of the surface. Even with fabrics and rough surfaces, the Low Vacuum Generator can still pick up and hold the material. We offer 7 different sizes ranging from 1.5 SCFM (42.5 SLPM) to 17 SCFM (476 SLPM) at 80 PSIG (5.5 Bar). They can also be matched to the size and quantity of vacuum cups as well as to overcome any leakage. If the surface of the product being moved is rough or the surface is very delicate, the Low Vacuum E-Vac Generator would be the best product to use.

EXAIR created a video to show the difference between the E-Vacs as well as a demonstration.

Click Video

For experimentation with the E-Vacs and the vacuum cups, EXAIR offers kits for both types of generators. The standard kit includes four pairs of vacuum cups (matched to the size of the E-Vac), 10 feet (3 m) of poly line, and an assortment of fittings. For the Deluxe kit, it will include the same items in the standard kit, plus an automatic drain filter and a regulator. The E-Vacs are made of a durable 6061 aluminum, but if a different material is required for your application, EXAIR can review this request.

The EXAIR E-Vac offers an efficient, simple, and maintenance free solution to create vacuum. Whether lifting product horizontally or vertically, opening bags, aligning sheets or leak checking, the E-Vac ensures a flexible and reliable way to continuously keep your operation moving. As compared to an electric vacuum pump, these vacuum generators are much smaller, less expensive and much quieter. If you need help in sizing and selecting the correct model, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb