## How to Calculate and Avoid Compressed Air Pressure Drop in Systems

EXAIR has been manufacturing Intelligent Compressed Air Products since 1983.  They are engineered with the highest of quality, efficiency, safety, and effectiveness in mind.  Since compressed air is the source for operation, the limitations can be defined by its supply.  With EXAIR products and pneumatic equipment, you will need a way to transfer the compressed air from the air compressor.  There are three main ways; pipes, hoses and tubes.  In this blog, I will compare the difference between compressed air hoses and compressed air tubes.

The basic difference between a compressed air hose and a compressed air tube is the way the diameter is defined.    A hose is measured by the inner diameter while a tube is measured by the outer diameter.  As an example, a 3/8” compressed air hose has an inner diameter of 3/8”.  While a 3/8” compressed air tube has an outer diameter that measures 3/8”.  Thus, for the same dimensional reference, the inner diameter for the tube will be smaller than the hose.

Why do I bring this up?  Pressure drop…  Pressure Drop is a waste of energy, and it reduces the ability of your compressed air system to do work.  To reduce waste, we need to reduce pressure drop.  If we look at the equation for pressure drop, DP, we can find the factors that play an important role.  Equation 1 shows a reference equation for pressure drop.

Equation 1:

DP = Sx * f * Q1.85 * L / (ID5 * P)

DP – Pressure Drop

Sx – Scalar value

f – friction factor

Q – Flow at standard conditions

L – Length of pipe

ID – Inside Diameter

P – Absolute Pressure

From Equation 1, differential pressure is controlled by the friction of the wall surface, the flow of compressed air, the length of the pipe, the diameter of the pipe, and the inlet pressure.  As you can see, the pressure drop, DP, is inversely affected by the inner diameter to the fifth power.  So, if the inner diameter of the pipe is twice as small, the pressure drop will increase by 25, or 32 times.

Let’s revisit the 3/8” hose and 3/8” tube.  The 3/8” hose has an inner diameter of 0.375”, and the 3/8” tube has an inner diameter of 0.25”.  In keeping the same variables except for the diameter, we can make a pressure drop comparison.  In Equation 2, I will use DPt and DPh for the pressure drop within the tube and hose respectively.

Equation 2:

DPt / DPh = (Dh)5 / (Dt)5

DPt – Pressure drop of tube

DPh – Pressure Drop of hose

Dh – Inner Diameter of hose

Dt – Inner Diameter of tube

Thus, DPt / DPh = (0.375”)5 / (0.25”)5 = 7.6

As you can see, by using a 3/8” tube in the process instead of the 3/8” hose, the pressure drop will be 7.6 times higher.

At EXAIR, we want to make sure that our customers are able to get the most from our products.  To do this, we need to properly size the compressed air lines.  Within our installation sheets for our Super Air Knives, we recommend the infeed pipe sizes for each air knife at different lengths.

There is also an excerpt about replacing schedule 40 pipe with a compressed air hose.  We state; “If compressed air hose is used, always go one size larger than the recommended pipe size due to the smaller I.D. of hose”.  Here is the reason.  The 1/4” NPT Schedule 40 pipe has an inner diameter of 0.364” (9.2mm).  Since the 3/8” compressed air hose has an inner diameter of 0.375” (9.5mm), the diameter will not create any additional pressure drop.  Some industrial facilities like to use compressed air tubing instead of hoses.  This is fine as long as the inner diameters match appropriately with the recommended pipe in the installation sheets.  Then you can reduce any waste from pressure drop and get the most from the EXAIR products.

With the diameter being such a significant role in creating pressure drop, it is very important to understand the type of connections to your pneumatic devices; i.e. hoses, pipes, or tubes.  In most cases, this is the reason for pneumatic products to underperform, as well as wasting energy within your compressed air system.  If you would like to discuss further the ways to save energy and reduce pressure drop, an Application Engineer at EXAIR will be happy to assist you.

John Ball
Application Engineer
Email: johnball@exair.com

## Understanding Compressed Air Supply Piping

An important component of your compressed air system is the supply piping. The piping will be the middle man that connects your entire facility to the compressor. Before installing pipe, it is important to consider how the compressed air will be consumed at the point of use.  You’ll also need to consider the types of fittings you’ll use, the size of the distribution piping, and whether you plan to add additional equipment in the next few years. If so, it is important that the system is designed to accommodate any potential expansion. This also helps to compensate for potential scale build-up (depending on the material of construction) that will restrict airflow through the pipe.

The first thing you’ll need to do is determine your air compressor’s maximum CFM and the necessary operating pressure for your point of use products. Keep in mind, operating at a lower pressure can dramatically reduce overall operating costs. Depending on a variety of factors (elevation, temperature, relative humidity) this can be different than what is listed on directly on the compressor. (For a discussion of how this impacts the capacity of your compressor, check out one of our previous blogs – Intelligent Compressed Air: SCFM, ACFM, ICFM, CFM – What do these terms mean?)

Once you’ve determined your compressor’s maximum CFM, draw a schematic of the necessary piping and list out the length of each straight pipe run. Determine the total length of pipe needed for the system. Using a graph or chart, such as this one from Engineering Toolbox. Locate your compressor’s capacity on the y-axis and the required operating pressure along the x-axis. The point at which these values meet will be the recommended MINIMUM pipe size. If you plan on future expansion, now is a good time to move up to the next pipe size to avoid any potential headache.

After determining the appropriate pipe size, you’ll need to consider how everything will begin to fit together. According to the from the Compressed Air Challenge, the air should enter the compressed air header at a 45° angle, in the direction of flow and always through wide-radius elbows. A sharp angle anywhere in the piping system will result in an unnecessary pressure drop. When the air must make a sharp turn, it is forced to slow down. This causes turbulence within the pipe as the air slams into the insides of the pipe and wastes energy. A 90° bend can cause as much as 3-5 psi of pressure loss. Replacing 90° bends with 45° bends instead eliminates unnecessary pressure loss across the system.

Pressure drop through the pipe is caused by the friction of the air mass making contact with the inside walls of the pipe. This is a function of the volume of flow through the pipe. Larger diameter pipes will result in a lower pressure drop, and vice versa for smaller diameter pipes. The chart below from the provides the pressure drop that can be expected at varying CFM for 2”, 3”, and 4” ID pipe.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on Like us on Twitter: @EXAIR_JS

Images Courtesy of  the Compressed Air Challenge and thomasjackson1345 Creative Commons.

## Intelligent Compressed Air: Distribution Piping

An important component of your compressed air system is the distribution piping. The piping will be the “veins” that connect your entire facility to the compressor. Before installing pipe, it is important to consider how the compressed air will be consumed at the point of use. Some end use devices must have adequate ventilation. For example, a paint booth will need to be installed near an outside wall to exhaust fumes. Depending on the layout of your facility, this may require long piping runs.  You’ll need to consider the types of fittings you’ll use, the size of the distribution piping, and whether you plan to add additional equipment in the next few years. If so, it is important that the system is designed to accommodate any potential expansion. This also helps to compensate for potential scale build-up (depending on the material of construction) that will restrict airflow through the pipe.

The first thing you’ll need to do is determine your air compressor’s maximum CFM and the necessary operating pressure for your point of use products. Keep in mind, operating at a lower pressure can dramatically reduce overall operating costs. Depending on a variety of factors (elevation, temperature, relative humidity) this can be different than what is listed on directly on the compressor. (For a discussion of how this impacts the capacity of your compressor, check out one of my previous blogs – Intelligent Compressed Air: SCFM, ACFM, ICFM, CFM – What do these terms mean?) Once you’ve determined your compressor’s maximum CFM, draw a schematic of the necessary piping and list out the length of each straight pipe run. Determine the total length of pipe needed for the system. Using a graph or chart, such as this one from Engineering Toolbox. Locate your compressor’s capacity on the y-axis and the required operating pressure along the x-axis. The point at which these values meet will be the recommended MINIMUM pipe size. If you plan on future expansion, now is a good time to move up to the next pipe size to avoid any potential headache.

Once you’ve determined the appropriate pipe size, you’ll need to consider how everything will begin to fit together. According to the “Best Practices for Compressed Air Systems” from the Compressed Air Challenge, the air should enter the compressed air header at a 45° angle, in the direction of flow and always through wide-radius elbows. A sharp angle anywhere in the piping system will result in an unnecessary pressure drop. When the air must make a sharp turn, it is forced to slow down. This causes turbulence within the pipe as the air slams into the insides of the pipe and wastes energy. A 90° bend can cause as much as 3-5 psi of pressure loss. Replacing 90° bends with 45° bends instead eliminates unnecessary pressure loss across the system.

Pressure drop through the pipe is caused by the friction of the air mass making contact with the inside walls of the pipe. This is a function of the volume of flow through the pipe. Larger diameter pipes will result in a lower pressure drop, and vice versa for smaller diameter pipes. The chart below from the “Compressed Air and Gas Institute Handbook” provides the pressure drop that can be expected at varying CFM for 2”, 3”, and 4” ID pipe.

You’ll then need to consider the different materials that are available. Some different materials that you’ll find are: steel piping (Schedule 40) both with or without galvanizing, stainless steel, copper, aluminum, and even some plastic piping systems are available.

While some companies do make plastic piping systems, plastic piping is not recommended to be used for compressed air. Some lubricants that are present in the air can act as a solvent and degrade the pipe over time. PVC should NEVER be used as a compressed air distribution pipe. While PVC piping is inexpensive and versatile, serious risk can occur when using with compressed air. PVC can become brittle with age and will eventually rupture due to the stress. Take a look at this inspection report –  an automotive supply store received fines totaling \$13,200 as a result of an injury caused by shrapnel from a PVC pipe bursting.

Steel pipe is a traditional material used in many compressed air distribution systems.  It has a relatively low price compared to other materials and due to its familiarity is easy to install. It’s strong and durable on the outside. Its strength comes at a price, steel pipe is very heavy and requires anchors to properly suspend it. Steel pipe (not galvanized) is also susceptible to corrosion. This corrosion ends up in your supply air and can wreak havoc on your point-of-use products and can even contaminate your product. While galvanized steel pipe does reduce the potential for corrosion, this galvanizing coating can flake off over time and result in the exact same potential issues. Stainless Steel pipe eliminates the corrosion and rusting concerns while still maintaining the strength and durability of steel pipe. They can be more difficult to install as stainless steel pipe threads can be difficult to work with.

Copper piping is another potential option. Copper pipe is corrosion-free, easy to cut, and lightweight making it easy to suspend. These factors come at a significant increase in costs, however, which can prevent it from being a suitable solution for longer runs or larger ID pipe installations. Soldering of the connecting joints can be time consuming and does require a skilled laborer to do so, making copper piping a mid-level solution for your compressed air system.

Another lightweight material that is becoming increasingly more common in industry is aluminum piping. Like copper, aluminum is lightweight and anti-corrosion. They’re easy to connect with push-to-lock connectors and are ideal for clean air applications. Aluminum pipe remains leak-free over time and can dramatically reduce compressed air costs. While the initial cost can be high, eliminating potential leaks can help to recoup some of the initial investment. Aluminum pipe is also coated on the inside to prevent corrosion. While an aluminum piping system may be the most expensive, its easy installation and adaptability make it an excellent choice.

It can be easy to become overwhelmed with the variety of options at your disposal. Your facility layout, overall budget, and compressed air requirements will allow you to make the best choice. Once you’ve selected and installed your distribution piping, look to the EXAIR website for all of your point-of-use compressed air needs!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com

## Compressed Air Calculations, Optimization, and Tips

EXAIR uses our blog platform to communicate everything from new product announcements to personal interests to safe and efficient use of compressed air. We have recently passed our 5 year anniversary of posting blogs (hard for us to believe) and I thought it appropriate to share a few of the entries which explain some more of the technical aspects of compressed air.

Here is a good blog explaining EXAIR’s 6 steps to optimization, a useful process for improving your compressed air efficiency:

One of the Above 6 steps is to provide secondary storage, a receiver tank, to eliminate pressure drops from high use intermittent applications. This blog entry addresses how to size a receiver tank properly:

Here are 5 things everyone should know about compressed air, including how to calculate the cost of compressed air:

These next few entries address a common issue we regularly assist customers with, compressed air plumbing:

In a recent blog post we discuss how to improve the efficiency of your point of use applications:

Thanks for supporting our blog over the past 5 years, we appreciate it. If you need any support with your sustainability or safety initiatives, or with your compressed air applications please contact us.

Have a great day,
Kirk Edwards
@EXAIR_KE