Proper Supply Lines are Key to Air Knife Performance

A few weeks back I chatted with a customer on an Air Knife application where they were using our 48″ aluminum Super Air Knife to remove leftover dough from a baking pan. The knife was working somewhat, but they were seeing some residual dough being left in certain areas on the pans due to what they perceived as “weak” airflow. After reading through our catalog and installation guide, they noticed that there were available shim sets that would allow them to increase the gap setting to get more force and flow out of the knife.

Available in lengths from 3″ to 108″ in aluminum, 303ss or 316ss construction

Our aluminum Super Air Knives are shipped from stock with a .002″ shim installed. The optional shim set includes a .001″, .003″ and .004″ shim that would allow you to decrease or increase the performance. By operating the Super Air Knife with the .003″ shim installed, this would increase the force and flow by 1.5 times and using the .004″ shim would double the performance. Sometimes achieving greater force and flow may be required but with the customer saying they were seeing weak airflow, it seemed there may be a restriction on the supply side.

Super Air Knife with Shim Set

I asked the customer how the knife was plumbed and what size supply lines he was using. He advised that they were plumbing air to all 3 inlets on the bottom of the knife but they were using 3/4″ hose with a run of about 30′. I advised the customer that plumbing air to all 3 inlets is required for a 48″ Super Air Knife but we actually recommend 3/4″ Schedule 40 Pipe up to 10′ or 1″ pipe up to 50′. If using hose, he would need to go up a size to maintain a large enough ID to carry the volume required for the unit. In his case, since the length of the supply is close to 30′, he would need to use 1-1/4″ ID hose.

Improper plumbing line size is a common issue we deal with here at EXAIR. Using undersized supply lines can cause excessive pressure drops because they aren’t able to carry the volume of air necessary to properly supply the compressed air device. In this particular application, if the customer were to install either the .003″ or .004″ shim, while keeping his current plumbing size, the performance would actually be worse as now the lines are even more undersized due to the increased air volume requirement from the larger Super Air Knife gap.

If you are looking to change the performance with one of our Air Knives or if you would like to discuss a particular application or product, please contact one of our application engineers for assistance at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Proper Supply Line Size And Fittings Provide Peak Performance

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of run, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. A 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

We also explain how performance can be negatively affected by improper plumbing in the following short video:

 

Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Not All Quick Disconnects Are Equal

Quick disconnect pneumatic fittings have been a staple in any manufacturing facility I have ever visited in my 10+ years as part of the manufacturing world.   The fact is, they have been around for a lot longer than 10 years.   The style we see most often is the 1/4″ Quick Disconnect Fitting, and we are typically troubleshooting a lack of air volume problem because they are not sized properly for the application.  These can be found in any industrial supply companies catalog, your local hardware stores, and even auto parts stores.   Quick Disconnects are even sold with certain EXAIR Industrial Housekeeping products, the key being they are properly sized.

Properly sizing the quick disconnect is a critical step in the process of deciding how to lay out your piping system as well as how to ensure products operate at optimal performance.  As you can see in the picture above, the two quick disconnects on the left are both larger quick disconnects as well as larger NPT thread sizes.   The two on the right are smaller and probably a bit more common to see.  Also notice the thread sizes on each, these are also manufactured in many other NPT thread options.   The through hole on the quick disconnects is decided by the size of the QD, not the thread size on the other end.   The example I am illustrating is comparing the 3/8 NPT and 1/4 NPT quick disconnects: Even though you can have 3/8 NPT threads, your throat diameter of the QD is still restricted to .195″ I.D., the same as the 1/4 NPT.  This can be a large restriction on a product with a 3/8 NPT thread size.

The Inner Diameters of the Quick Disconnects

Also to be noted is that all QD’s of the same size are not made equally, tests have shown that you can lose as much as 20 psi through a quick disconnect and up to 40 psi when not properly matched with the female QD.   This leads to the next step which is to ensure that you are not purchasing a QD on appearance.  MAke sure to choose the QD designed to permit the amount of air you need to operate your point of use product without a volume or pressure loss.

These two points are reasons why quick disconnects can diminish your point of use compressed air product performance.  If you have questions on which size to use with your EXAIR product or need help determining why your point of use product is not performing how you would like, contact us.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

 

Video Blog: Proper Supply Plumbing for Compressed Air Products

This video illustrates how improper compressed air supply lines can result in a pressure loss and impact product performance.

Russ Bowman
Application Engineer
EXAIR Corporation
(513)671-3322 local
(800)923-9247 toll free
(513)671-3363 fax
Web: www.exair.com
Blog: https://blog.exair.com/
Twitter: twitter.com/exair_rb
Facebook: http://www.facebook.com/exair