Plumb it Right for Full Performance!

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of air supply line, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. An 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

EXAIR Products Qualify for Energy Rebates

The use of compressed air can be found in almost any industry and is often referred to as a “fourth utility” next to water, gas and electric. The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility, in many cases, it’s the largest energy user in an industrial plant. With an average cost of $ 0.25 per every 1,000 SCF used, compressed air can be expensive to produce so it is very important to use this utility as efficiently as possible.

Many utility companies recognize the benefit of using engineered products to reduce compressed air usage, like the ones manufactured by EXAIR, and offers rebate incentives for making a switch. Duke Energy, who supplies power to sections of North Carolina, South Carolina, Ohio, Kentucky, Indiana and Florida offers several “Smart $aver Rebates” that focus around the generation and use of compressed air. (State and Location Dependent)

Duke Energy’s Smart Saver Program

However the best place to look at your states available programs is the DSIRE database. DSIRE is the most comprehensive source of information on incentives and policies that support renewable energy and energy efficiency in the United States. Established in 1995, DSIRE is operated by the N.C. Clean Energy Technology Center at N.C. State University. Follow the link above to read about the history of DSIRE, the partners on the project, and the research staff that maintains the policy and incentive data in DSIRE.

The Process is pretty easy! Visit https://www.dsireusa.org/ and type in your Zip Code!

After you get your results, search some key words, Like “Industrial” “Energy” “Commercial” “Energy Efficiency” “Compressed air”

Here you can see the two Programs that came up for 46077, you can then click the program name and it will take you a information page with the programs website and information!

Here at EXAIR, much of our focus is to improve the overall efficiency of industrial compressed air operating processes and point of use compressed air operated products. If you’d like to contact one of our application engineers, we can help recommend the proper engineered solution to not only save on your compressed air usage but also assist with possible energy rebates available in your area.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Money Seed Creative Commons Images from Pictures of Money, Attribution 2.0 Generic (CC BY 2.0)

Vortex Tube Cold Fraction and how it Affects Flow and Temperature Control

Vortex Tubes are the perfect solution when dealing with a variety of spot cooling applications. They use compressed air to produce a cold air stream and a hot air stream, with temperatures ranging from as low as -50°F  up to +260°F (based on ambient supply temperature) and providing as much as 10,200 Btu/hr. of cooling capacity. By simply adjusting the valve in the hot end of the Vortex Tube, you are able to control the “cold fraction” which is the percentage of air consumed by the vortex tube that is exhausted as cold air versus the amount of air exhausted as hot air. Our small, medium and large Vortex Tubes provide the same temperature drop and rise, it’s the volume of air that changes with the various sizes.

The unique physical phenomenon of the Vortex Tube principle generates cold air instantly, and for as long – or short – a time as needed.

When looking at the below performance chart, you will see that “Pressure Supply” and “Cold Fraction %” setting all play a part in changing the performance of the Vortex Tubes. Take for example, an operating pressure of 100 PSIG and cold fraction setting of 20%, you will see a 123°F drop on the cold side versus a 26°F temperature rise on the hot side. By the using the same Vortex Tube and keeping the operating pressure at 100 PSIG but changing the cold fraction to 80%, you will now see a 54°F temperature drop on the cold side and a 191° rise at the hot end.

Vortex Tube Performance Data
Vortex Tube Performance Chart

We’ve looked at how the cold fraction changes the temperature, but how does it change the flow for the various Models?

Say you are using a Model # 3240 Medium Vortex Tube which consumes 40 SCFM @ 100 PSIG. Again with the cold fraction set at 80% (80% of the consumed compressed air out of the cold end), you would flow 32 SCFM at the cold air exhaust.

40 SCFM x 0.8 (80% CF) = 32 SCFM

Using the same Model # 3240 Medium Vortex Tube but now with a 20% cold fraction (20% of consumed compressed air out of the cold end), you would flow 8 SCFM at the cold exhaust.

40 SCFM x 0.20 (20% CF) = 8 SCFM

As you can see, to achieve the colder air temperatures, the volume of cold air being exhausted is reduced as well. This is important to consider when making a Model selection. Some other considerations include the operating pressure which also has a significant effect on performance. The compressed air supply temperature is important because the above temperatures are temperature differentials, so in the example of the 80% cold fraction there is a 115F temperature drop from your inlet compressed air temperature.

If you need additional assistance, you can always contact myself or another application engineer and we would be happy to make the best selection to fit your specific need.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

EXAIR Cold Gun, Different Application, Problem Solved!

Recently I was working with a customer on sizing a EXAIR Cabinet Cooler when I found out they would be best suited by another EXAIR product! They wanted to cool some analyzer panel fins (heat sinks) while keeping dust off of them. This application said Cold Gun all the way!

I recommended our Model # 5315 Cold Gun Aircoolant System with two cold outlets. The Cold Gun produces a 50°F temperature drop from compressed air supply temperature and provides 1,000 Btu/hr. of cooling capacity. For example, if your compressed air supply temperature is 70°F you would effectively see 20°F air being discharged from the cold exhaust. The Dual Point Hose Kit splits the cold airflow into 2 separate streams, providing for a wider coverage area.

5315_SCGdual
Model # 5315 Cold Gun System with dual point hose kit

The customer decided to order a single unit and after a week of testing replied back…

“We tried one a week ago with excellent results! We are installing three more today. 

Thank you so much for your help! Our analyzer is running 31°F cooler than it had been with no more overtemp failures!”

It goes without mentioning, but this is the type of positive feedback we are thrilled to hear! It feels incredible when a customer takes time out of their busy schedule to acknowledge how EXAIR products provided the perfect solution for their needs!

BUT the story doesn’t end there… just last week, over 2 months since our last correspondence, the customer sent me another email that read…

“Just a follow up on the effectiveness of the cold air guns. We have not experienced a single failure of our TOC analyzers since the guns were installed two months ago.

The cold air solved the problem of our analyzer overheating — even during the hottest part of the summer.

Thank you for your excellent recommendation!”

I let the customer know how much we appreciated the awesome news and how happy we were to be able to solve their problem. At the end of the day, that’s what we strive for, to provide the best and largest selection of Intelligent Compressed Air Products on the market today.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS