Vortex Tube Cold Fraction and how it Affects Flow and Temperature Control

Vortex Tubes are the perfect solution when dealing with a variety of spot cooling applications. They use compressed air to produce a cold air stream and a hot air stream, with temperatures ranging from as low as -50°F  up to +260°F (based on ambient supply temperature) and providing as much as 10,200 Btu/hr. of cooling capacity. By simply adjusting the valve in the hot end of the Vortex Tube, you are able to control the “cold fraction” which is the percentage of air consumed by the vortex tube that is exhausted as cold air versus the amount of air exhausted as hot air. Our small, medium and large Vortex Tubes provide the same temperature drop and rise, it’s the volume of air that changes with the various sizes.

When looking at the below performance chart, you will see that “Pressure Supply” and “Cold Fraction %” setting all play a part in changing the performance of the Vortex Tubes. Take for example, an operating pressure of 100 PSIG and cold fraction setting of 20%, you will see a 123°F drop on the cold side versus a 26°F temperature rise on the hot side. By the using the same Vortex Tube and keeping the operating pressure at 100 PSIG but changing the cold fraction to 80%, you will now see a 54°F temperature drop on the cold side and a 191° rise at the hot end.

We’ve looked at how the cold fraction changes the temperature, but how does it change the flow for the various Models?

Say you are using a Model # 3240 Medium Vortex Tube which consumes 40 SCFM @ 100 PSIG. Again with the cold fraction set at 80% (80% of the consumed compressed air out of the cold end), you would flow 32 SCFM at the cold air exhaust.

40 SCFM x 0.8 (80% CF) = 32 SCFM

Using the same Model # 3240 Medium Vortex Tube but now with a 20% cold fraction (20% of consumed compressed air out of the cold end), you would flow 8 SCFM at the cold exhaust.

40 SCFM x 0.20 (20% CF) = 8 SCFM

As you can see, to achieve the colder air temperatures, the volume of cold air being exhausted is reduced as well. This is important to consider when making a Model selection. Some other considerations include the operating pressure which also has a significant effect on performance. The compressed air supply temperature is important because the above temperatures are temperature differentials, so in the example of the 80% cold fraction there is a 115F temperature drop from your inlet compressed air temperature.

If you need additional assistance, you can always contact myself or another application engineer and we would be happy to make the best selection to fit your specific need.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web

The History of the Man Behind the Friendly Little Demon

James Clerk Maxwell was born in Edinburgh Scotland on June 13, 1831 and from the age of three years old he was described as have an innate sense of inquisitiveness. In 1839 at the young age of 8 years old James’ mother passed away from abdominal cancer which put the boy’s father and father’s sister-in-law in charge of his schooling. In February of 1842 James’ father took him to see Robert Davidson’s demonstration of electric propulsion and magnetic force; little did he know that this event would strongly impact on his future.

Fascinated with geometry from an early age James would go on to rediscover the regular polyhedron before he was instructed. At the age of 13 James’ would go on to win the schools mathematical medal and first prize in both English and Poetry.

Later in his life James would go on to calculate and discover the relationship between light, electricity, and magnetism. This discovery would lay the ground work for Albert Einstein’s Special Theory of Relativity. Einstein later credit Maxwell for laying the ground work and said his work was “the most profound and the most fruitful that physics has experienced since the time of Newton.”. James Maxwell’s work would literally lay the ground work for launching the world into the nuclear age.

Starting in the year 1859 Maxwell would begin developing the theory of the distribution of velocities in particles of gas, which was later generalized by Ludwig Boltzmann in the formula called the Maxwell-Boltzmann distribution. In his kinetic theory, it is stated that temperature and heat involve only molecular movement. Eventually his work in thermodynamics would lead him to a though experiment that would hypothetically violate the second law of thermodynamics, because the total entropy of the two gases would decrease without applying any work. His description of the experiment is as follows:

…if we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are as essentially finite as our own, would be able to do what is impossible to us. For we have seen that molecules in a vessel full of air at uniform temperature are moving with velocities by no means uniform, though the mean velocity of any great number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose that such a vessel is divided into two portions, A and B, by a division in which there is a small hole, and that a being, who can see the individual molecules, opens and closes this hole, so as to allow only the swifter molecules to pass from A to B, and only the slower molecules to pass from B to A. He will thus, without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of thermodynamics.

Here at EXAIR we are very familiar with Maxwell’s “friendly little demon” that can separate gases into a cold and hot stream. His thought experiment, although unproven in his life time, did come to fruition with the introduction of the Vortex Tube.

With his birthday being last weekend I propose that we raise a glass and tip our hats to a brilliant man and strive to remember the brilliant ideas that he gave us.

If you have any questions or want more information on EXAIR’s Cabinet Coolers or like products. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web

EXAIR Manufactures Custom Vortex Tubes

EXAIR is based in Cincinnati, OH and it is where we design and manufacture our products. Since we are the manufacturer, we can design and build custom product when your application demands particular features. Vortex Tubes are the foundation of our cooling products and can be customized to suit your needs in many ways…

The EXAIR Vortex Tube uses compressed air to generate a cold air stream at one end and a hot air stream at the other end.  This phenomenon in physics is also known as the Ranque-Hilsch tube.  It can generate very cold or very hot air without any moving parts, motors, or Freon.  Thus; making it low cost, reliable, and maintenance free.  The EXAIR Vortex Tube can generate

• Air temperatures from -50 to +260 deg. F (-46 to +127 deg. C).
• Flow rates from 1 to 150 SCFM (28 to 4,248 SLPM)
• Refrigeration up to 10,200 BTU/hr (2,570 Kcal/hr)

With a wide range of cooling and heating applications, the EXAIR Vortex Tubes can be an ideal product for you.  They are used for cooling electronics, CCTV cameras, and soldered parts.  They are also useful for setting hot melts, gas sampling, and environmental chambers.  With its very compact and versatile design, it can be mounted in tight places to apply heated or cold air to your process.  The Vortex Tubes are used for improving process times in cooling, protecting equipment, or setting specific temperature requirements.  If you need a Vortex Tube to be more specific to your application, EXAIR can manufacture a proprietary product in the following ways:

Preset Vortex Tubes – the standard Vortex Tube has a screw on the hot end to adjust the cold and hot air temperatures.  To make the Vortex Tube tamper-resistant, EXAIR can replace the screw with a preset hot valve.  If you can supply the temperature and flow requirements for your application, EXAIR can determine the correct diameter hole to give you a consistent temperature and flow from the Vortex Tube.

Materials – The standard Vortex Tubes has a maximum temperature rating of 125 deg. F (52 deg. C).  For elevated ambient temperature, we offer a brass generator which will increase the temperature rating to 200 deg. F (93 deg. C).  If other materials are needed for food, pharmaceutical, or chemical exposure, we can also offer stainless steel for the hot plug, cold cap, and generator. I have seen Vortex Tubes made entirely from 316SS and even one made with a brass body. There are EXAIR Vortex Tubes with special material o-rings and hot valves or with customized muffler assemblies.

Fittings – Our standard units have threaded connections on the Vortex Tube to connect fittings and tubing.  In certain applications to improve mounting and assembly, special fittings may be required for ease of installation.  EXAIR can attach or modify these parts to the Vortex Tube to meet your requirements.

At EXAIR, we pride ourselves with excellent customer service and quality products.  To take this one step further, we offer specials to accommodate your applications.  As a manufacturer of the Vortex Tubes, we can work with our customers to generate a custom product with high quality, fast delivery, and a competitive price.  So, if you do need a special Vortex Tube to give you a specific temperature, ease of mounting, or a proprietary product for your OEM design, you can discuss your requirements with an Application Engineer.  We will be happy to help you.

John Ball
Application Engineer

Email: johnball@exair.com

Vortex Tube Cold Fractions

Vortex Tubes are the perfect solution when dealing with a variety of spot cooling applications. They use compressed air to produce a cold air stream and a hot air stream, with temperatures ranging from as low as -50°F  up to +260°F (based on ambient supply temperature) and providing as much as 10,200 Btu/hr. of cooling capacity. By simply adjusting the valve in the hot end of the Vortex Tube, you are able to control the “cold fraction” which is the percentage of air consumed by the vortex tube that is exhausted as cold air versus the amount of air exhausted as hot air. Our small, medium and large Vortex Tubes provide the same temperature drop and rise, it’s the volume of air that changes with the various sizes.

When looking at the below performance chart, you will see that “Pressure Supply” and “Cold Fraction %” setting all play a part in changing the performance of the Vortex Tubes. Take for example, an operating pressure of 100 PSIG and cold fraction setting of 20%, you will see a 123°F drop on the cold side versus a 26°F temperature rise on the hot side. By the using the same Vortex Tube and keeping the operating pressure at 100 PSIG but changing the cold fraction to 80%, you will now see a 54°F temperature drop on the cold side and a 191° rise at the hot end.

We’ve looked at how the cold fraction changes the temperature, but how does it change the flow for the various Models?

Say you are using a Model # 3240 Medium Vortex Tube which consumes 40 SCFM @ 100 PSIG. Again with the cold fraction set at 80% (80% of the consumed compressed air out of the cold end), you would flow 32 SCFM at the cold air exhaust.

40 SCFM x 0.8 (80% CF) = 32 SCFM

Using the same Model # 3240 Medium Vortex Tube but now with a 20% cold fraction (20% of consumed compressed air out of the cold end), you would flow 8 SCFM at the cold exhaust.

40 SCFM x 0.20 (20% CF) = 8 SCFM

As you can see, to achieve the colder air temperatures, the volume of cold air being exhausted is reduced as well. This is important to consider when making a Model selection. Some other considerations would be the operating pressure which you can see also has a significant effect on performance. Also the compressed air supply temperature because the above temperatures are temperature differentials, so in the example of the 80% cold fraction there is a 115F temperature drop from your inlet compressed air temperature.

If you need additional assistance, you can always contact myself or another application engineer and we would be happy to make the best selection to fit your specific need.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN