How it Works: Theory Behind the Vortex Tube

What is a vortex tube and how does it work? A vortex tube is a device used to separate compressed air into a cold and hot stream of air; but the main question that many people have theorized is how does this device work.

In 1928 George Ranque, a French physics student stumbled upon this phenomenon on accident while he was performing experiments on a vortex type pump. During the experiment George noticed that hot air was being exhausted from one side and the other side was producing cold air. Eventually the device was forgotten about until 1945 when the German physicist, Rudolph Hilsch published a paper describing the device, eventually causing it to gain popularity and find applications in the industrial world.

EXAIR’s Vortex Tube uses compressed air as the supply and contains no moving parts to create a cold and hot stream of air from either end of the device. Using the valve located on the hot stream the vortex tube can achieve temperatures as low as -50°F (-46°C) and temperatures as high as 260°F (127°C).

The diagram bellow is one of the widely accepted explanations for the vortex tube phenomenon.

When the vortex tube is supplied with compressed air the air flow is directed into the generator that causes spin into a spiraling vortex at around 1,000,000 rpm. This spinning vortex flows down the neck of the hot tube denoted in the diagram as red. The control valve located on the end of the hot tube allows a fraction of the hot air to escape and what does not escape reverses direction and travels back down the tube in a second vortex denoted in blue. Inside of the low-pressure area of the larger outer warm air vortex, the inner vortex loses heat as it flows back to the front of the vortex and as it exits the vortex expels cold air.

The phenomenon is theorized to occur because both the hot and cold streams rotate at the same velocity and direction. This means that a particle of air in the inner vortex makes a complete revolution in the same time that a particle in the outer vortex takes to make a complete revolution. This effect is known as the principle of conservation of momentum and is the main driving force behind the vortex tube. In order for the system to stay in equilibrium air particles lose energy, in the form of heat, as they move from the outer stream to the inner stream, creating the cold air vortex that gets expelled.

At EXAIR we have harnessed many uses of vortex tubes for your cooling needs. Both our Cabinet Coolers and our Adjustable Spot Coolers utilize the vortex tube to either cool down an overheated cabinet or provide spot cooling for many different applications including to replace a messy coolant system for small grinding and machining applications.              

If you have questions about Vortex Tubes, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.   

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Vortex Tube Cold Fractions

Vortex Tubes are the perfect solution when dealing with a variety of spot cooling applications. They use compressed air to produce a cold air stream and a hot air stream, with temperatures ranging from as low as -50°F  up to +260°F (based on ambient supply temperature) and providing as much as 10,200 Btu/hr. of cooling capacity. By simply adjusting the valve in the hot end of the Vortex Tube, you are able to control the “cold fraction” which is the percentage of air consumed by the vortex tube that is exhausted as cold air versus the amount of air exhausted as hot air. Our small, medium and large Vortex Tubes provide the same temperature drop and rise, it’s the volume of air that changes with the various sizes.

Vortex Tubes
Vortex Tubes are available in small, medium and large sizes with various flows and cooling capacities.

When looking at the below performance chart, you will see that “Pressure Supply” and “Cold Fraction %” setting all play a part in changing the performance of the Vortex Tubes. Take for example, an operating pressure of 100 PSIG and cold fraction setting of 20%, you will see a 123°F drop on the cold side versus a 26°F temperature rise on the hot side. By the using the same Vortex Tube and keeping the operating pressure at 100 PSIG but changing the cold fraction to 80%, you will now see a 54°F temperature drop on the cold side and a 191° rise at the hot end.

Vortex Tube Performance Data
Vortex Tube Performance Chart

We’ve looked at how the cold fraction changes the temperature, but how does it change the flow for the various Models?

Say you are using a Model # 3240 Medium Vortex Tube which consumes 40 SCFM @ 100 PSIG. Again with the cold fraction set at 80% (80% of the consumed compressed air out of the cold end), you would flow 32 SCFM at the cold air exhaust.

40 SCFM x 0.8 (80% CF) = 32 SCFM

Using the same Model # 3240 Medium Vortex Tube but now with a 20% cold fraction (20% of consumed compressed air out of the cold end), you would flow 8 SCFM at the cold exhaust.

40 SCFM x 0.20 (20% CF) = 8 SCFM

As you can see, to achieve the colder air temperatures, the volume of cold air being exhausted is reduced as well. This is important to consider when making a Model selection. Some other considerations would be the operating pressure which you can see also has a significant effect on performance. Also the compressed air supply temperature because the above temperatures are temperature differentials, so in the example of the 80% cold fraction there is a 115F temperature drop from your inlet compressed air temperature.

If you need additional assistance, you can always contact myself or another application engineer and we would be happy to make the best selection to fit your specific need.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN