Vortex Tubes – The Basics, And Beyond

The Vortex Tube might be just about the most interesting compressed air device around.  They have no moving parts, and they don’t need any but a compressed air supply, which they ‘split’ into a hot air stream, and a cold air stream.

EXAIR Vortex Tubes come in three sizes – Small, Medium, and Large – and 24 distinct Models across those three sizes.  They’re all in stock, along with Hot & Cold Mufflers (for sound level reduction,) Automatic Drain Filter Separators (to keep the air supply clean & moisture free,) Oil Removal Filters (to coalesce any trace of oil from the air supply,) and Solenoid Valves & Thermostats (to automate operation.)

From left to right; a few value added accessories for your Vortex Tube: Hot Muffler, Cold Muffler, Automatic Drain Filter Separator, Oil Removal Filter, and Solenoid Valve/Thermostat Kit.

The Vortex Tube, right out of the box, is easily adaptable to a wide range of cooling (or heating) applications.  If your needs are specific, though, we can customize a Vortex Tube to meet them:

  • Material of construction: our stock Vortex Tubes are made of 303SS and are equipped with a plastic Generator and Buna o-ring.
    • For high temperature (>125F ambient) applications, we can install a brass Generator and Viton o-ring, suitable for ambient temperatures up to 200F.
    • If the environment is particularly aggressive, or if industry codes (I’m looking at you, food & pharma) call for it, we can also make them out of other materials.  We’ve, for instance, made them out of 316SS, complete with material certifications, when needed.
  • Flow & temperature: the Hot Valve can be opened or closed to dial in a particular Cold Fraction (that’s the percentage of the supply air which is directed to the cold end.)  If you know what flow rate and temperature you want, we can replace the Hot Valve with a non-adjustable plug, so your Vortex Tube’s cold flow is only dependent on the compressed air supply temperature and pressure.
  • Accessories: if you’re looking for features like a magnetic base, or a flexible cold air hose, you might consider an Adjustable Spot Cooler.  If you like the idea of tool-free change of air flow/temperature, that’s definitely the way to go.  If you want those other options, and don’t mind using a screwdriver to adjust the Cold Fraction, those other options are compatible with any Medium Vortex Tube.
Model 3925 Adjustable Spot Cooler

These are just a few of the most common possibilities for customizing a Vortex Tube.  If you have a spot cooling application you’d like to discuss, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Vortex Tubes: What is a Cold Fraction?

Have you ever needed a source of cold air but don’t want to invest in a costly chiller? INTRODUCING Vortex Tubes! Vortex Tubes use compressed air and contain no moving parts to create a cold and hot stream of air from either end of the device. Using the valve located on the hot stream a vortex tube can achieve temperatures as low as -50°F (-46°C) and temperatures as high as 260°F (127°C).

When the vortex tube is supplied with compressed air the air flow is directed into the generator that causes spin into a spiraling vortex at around 1,000,000 rpm. This spinning vortex flows down the neck and wall of the hot tube. The control valve located on the end of the hot tube allows a fraction of the hot air to escape and what does not escape reverses direction and travels back down the center of the tube and exhausts out of the cold end. Inside of the low-pressure area of the larger outer warm air vortex, the inner vortex loses heat as it flows back to the cold end of the vortex and as it exits the vortex expels cold air. The absolute temperature drop that occurs during this process is going to be controlled by the cold fraction of the Vortex Tube and the supply pressure.

The brass screw used to control the cold fraction of a vortex tube

The cold fraction is defined as the amount of the inlet supply air that will exit out of the cold end of the vortex tube. An example would be if I had 10 SCFM supplied to a vortex tube with 60% cold fraction, then 6 SCFM would be exiting the cold discharge. Cold based on the amount of air you allow out of the hot end of the vortex tube you can control the temperature drop of the cold air. A smaller cold fraction which only allows a small amount of air to exit the cold discharge will result in a larger temperature drop; and vise versa a larger cold fraction will result in a much smaller temperature drop.

Table the shows the temperature drop and rise in correlation with the cold fraction and pressure

Here a EXAIR we have designed our vortex tubes to operate optimally at both a high cold fraction and a low cold fraction. The 32XX series designed to give you the best refrigeration, which means it will work well for cold fractions ~60% – 80%. This will give you a smaller temperature drop with more air flow which allows you to keep things cool much easier. This contrasts with the 34XX series which is designed more optimal performance at lower temperatures; this means the optimal cold fraction would be ~20% to 40%. Cold fractions this low will produce very little air flow but the temperature will be very cold (as low as -50°F). This is useful if you need to get an item down to a very low temperature.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Cooling With Compressed Air: Air Knife vs. Vortex Tube Products

One of the popular applications for the EXAIR Super Air Knife is cooling. When mounted so that the air flow sweeps across the surface of a product, the laminar nature of the air flow works to maximize the contact time with the surface, which also maximizes the heat transfer…which means better product cooling than, say the turbulent air flow from a fan or blower.

Still, it’s common for us to get questions about how to provide even faster cooling.  Well, the two main variables in heat transfer are the time the air is in contact with the product, and the difference in temperature between the product surface and the air.

We’ve already touched on “time in contact”…sweeping the laminar flow across the surface at as low of an angle as you can, against the direction of travel, is ideal.  Combine that with the extraordinarily high air flow due to the entrainment level of the Super Air Knife, and you get an awful lot of air in contact with the surface, for a (relatively) long time.

Super Air Knives cool steel casting from 1,725°F (940°C) to 200°F (93°C) in under 20 minutes.

The difference in temperature, though, is a little trickier to deal with.  Because the developed flow from the Super Air Knife is mostly entrained ambient temperature air from the surrounding environment, you’re at the mercy of that ambient temperature.  One of the most common question – of the common questions about faster cooling – is, can you feed a Super Air Knife with cold air from a Vortex Tube?  The answer is no, for two big reasons:

  • The Vortex Tube’s cold flow can’t be back pressured, which would happen if you fed it through the plenum of a Super Air Knife and tried to make it come out the 0.002″ gap.
  • Even if it did work, the entrained air which, remember, makes up most of the flow, is still room temperature…meaning the total developed flow is a lot closer to room temperature than however cold the air you fed the Super Air Knife would be.

If the surface area to be blown on, to effect the desired cooling, is suitably sized, a Vortex Tube can be installed at a low angle to sweep its flow across.  The cold air flow from a Vortex Tube can also be distributed to more than one point, to cover more surface area.  That’s exactly what we do with our Dual Point Hose Kits for our Adjustable Spot Coolers, Mini Coolers, and Cold Gun Aircoolant Systems:

Dual Point Hose Kits can distribute air to both sides of a part, or onto a wider surface, than a single point discharge.

In fact, both the Single and Dual Point Hose Kits have a variety of tips they can be fitted with for tighter, or broader, flow patterns:

In some cases, multiple Vortex Tube products can be used, and, in other situations, the cold air can be directed through a manifold of some sort:

There are numerous methods to distribute the cold air flow from a lone, or a series of, Vortex Tubes.

Applications like the two on the right above (setting molten chocolate in molds, and keeping those white plastic parts during ultrasonic welding, respectively,) commonly start out as Air Knife inquiries, but the need for refrigerated air leads to creative Vortex Tube solutions.

If you’d like to discuss whether your application is best served by a Super Air Knife or a Vortex Tube Spot Cooling Product, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Vortex Tube Cold Fractions Explained

Simply put, a Vortex Tube’s Cold Fraction is the percentage of its supply air that gets directed to the cold end. The rest of the supply air goes out the hot end. Here’s how it works:

The Control Valve is operated by a flat head screwdriver.

No matter what the Cold Fraction is set to, the air coming out the cold end will be lower in temperature, and the air exiting the hot end will be higher in temperature, than the compressed air supply.  The Cold Fraction is set by the position of the Control Valve.    Opening the Control Valve (turning counterclockwise, see blue arrow on photo to right) lowers the Cold Fraction, resulting in lower flow – and a large temperature drop – in the cold air discharge.  Closing the Control Valve (turning clockwise, see red arrow) increases the cold air flow, but results in a smaller temperature drop.  This adjustability is key to the Vortex Tube’s versatility.  Some applications call for higher flows; others call for very low temperatures…more on that in a minute, though.

The Cold Fraction can be set as low as 20% – meaning a small amount (20% to be exact) of the supply air is directed to the cold end, with a large temperature drop.  Conversely, you can set it as high as 80% – meaning most of the supply air goes to the cold end, but the temperature drop isn’t as high.  Our 3400 Series Vortex Tubes are for 20-50% Cold Fractions, and the 3200 Series are for 50-80% Cold Fractions.  Both extremes, and all points in between, are used, depending on the nature of the applications.  Here are some examples:

EXAIR 3400 Series Vortex Tubes, for air as low as -50°F.

A candy maker needed to cool chocolate that had been poured into small molds to make bite-sized, fun-shaped, confections.  Keeping the air flow low was critical…they wanted a nice, smooth surface, not rippled by a blast of air.  A pair of Model 3408 Small Vortex Tubes set to a 40% Cold Fraction produce a 3.2 SCFM cold flow (feels a lot like when you blow on a spoonful of hot soup to cool it down) that’s 110°F colder than the compressed air supply…or about -30°F.  It doesn’t disturb the surface, but cools & sets it in a hurry.  They could turn the Cold Fraction down all the way to 20%, for a cold flow of only 1.6 SCFM (just a whisper, really,) but with a 123°F temperature drop.

Welding and brazing are examples of applications where higher flows are advantageous.  The lower temperature drop doesn’t make all that much difference…turns out, when you’re blowing air onto metal that’s been recently melted, it doesn’t seem to matter much if the air is 20°F or -20°F, as long as there’s a LOT of it.  Our Medium Vortex Tubes are especially popular for this.  An ultrasonic weld that seals the end of a toothpaste tube, for example, is done with a Model 3215 set to an 80% Cold Fraction (12 SCFM of cold flow with a 54°F drop,) while brazing copper pipe fittings needs the higher flow of a Model 3230: the same 80% cold fraction makes 24 SCFM cold flow, with the same 54°F temperature drop.

Regardless of which model you choose, the temperature drop of the cold air flow is determined by only two factors: Cold Fraction setting, and compressed air supply pressure.  If you were wondering where I got all the figures above, they’re all from the Specification & Performance charts published in our catalog:

3200 Series are for max cooling (50-80% Cold Fractions;) 3400’s are for max cold temperature (20-50% Cold Fractions.)

Chocolate cooling in brown; welding/brazing in blue.

EXAIR Vortex Tubes & Spot Cooling Products are a quick & easy way to supply a reliable, controllable flow of cold air, on demand.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook