Vortex Tube Cold Fraction and how it Affects Flow and Temperature Control

Vortex Tubes are the perfect solution when dealing with a variety of spot cooling applications. They use compressed air to produce a cold air stream and a hot air stream, with temperatures ranging from as low as -50°F  up to +260°F (based on ambient supply temperature) and providing as much as 10,200 Btu/hr. of cooling capacity. By simply adjusting the valve in the hot end of the Vortex Tube, you are able to control the “cold fraction” which is the percentage of air consumed by the vortex tube that is exhausted as cold air versus the amount of air exhausted as hot air. Our small, medium and large Vortex Tubes provide the same temperature drop and rise, it’s the volume of air that changes with the various sizes.

The unique physical phenomenon of the Vortex Tube principle generates cold air instantly, and for as long – or short – a time as needed.

When looking at the below performance chart, you will see that “Pressure Supply” and “Cold Fraction %” setting all play a part in changing the performance of the Vortex Tubes. Take for example, an operating pressure of 100 PSIG and cold fraction setting of 20%, you will see a 123°F drop on the cold side versus a 26°F temperature rise on the hot side. By the using the same Vortex Tube and keeping the operating pressure at 100 PSIG but changing the cold fraction to 80%, you will now see a 54°F temperature drop on the cold side and a 191° rise at the hot end.

Vortex Tube Performance Data
Vortex Tube Performance Chart

We’ve looked at how the cold fraction changes the temperature, but how does it change the flow for the various Models?

Say you are using a Model # 3240 Medium Vortex Tube which consumes 40 SCFM @ 100 PSIG. Again with the cold fraction set at 80% (80% of the consumed compressed air out of the cold end), you would flow 32 SCFM at the cold air exhaust.

40 SCFM x 0.8 (80% CF) = 32 SCFM

Using the same Model # 3240 Medium Vortex Tube but now with a 20% cold fraction (20% of consumed compressed air out of the cold end), you would flow 8 SCFM at the cold exhaust.

40 SCFM x 0.20 (20% CF) = 8 SCFM

As you can see, to achieve the colder air temperatures, the volume of cold air being exhausted is reduced as well. This is important to consider when making a Model selection. Some other considerations include the operating pressure which also has a significant effect on performance. The compressed air supply temperature is important because the above temperatures are temperature differentials, so in the example of the 80% cold fraction there is a 115F temperature drop from your inlet compressed air temperature.

If you need additional assistance, you can always contact myself or another application engineer and we would be happy to make the best selection to fit your specific need.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Spot Cooling, Cold Gun Promotion

Like many companies, here at EXAIR we generally always have a promotional offering.  These rotate throughout the months and this month is no different.  The current offering involves the EXAIR Cold Gun Aircoolant Systems.

These spot cooling systems help to reduce cutting fluid use, increase production speeds, increase tool life, and has helped more customers than I know.  One customer in particular is a maintenance worker from a welded tube manufacturer.  This facility had very little amount of downtime permitted due to the high efficiency and high volume of orders.  When a machine went down the maintenance team went in like a trauma team to determine the cause of failure and get it fixed to get the line back up and running. One of the biggest problems they would have is when they would have to dry machine a quick part to get the machine back up and running, this would either ruin tools or they would have to slow down the machining time to get the surface finish and dimensions they truly needed.  After talking with us the team ordered a Single Point Cold Gun Aircoolant System as these parts were generally small enough to tackle with the single cold outlet (larger parts benefit from the dual point hose kit).

They received the spot cooler system in and sure enough a machine went down.  The crew went to work and once the broken part was located they got to work on their lathe trying to make a new piece.  The Cold Gun held itself straight to the headstock thanks to the integrated magnet and the flexible single point hose kit routed the cold air straight to the cutting insert point.  They didn’t have to fill up the liquid tank or setup the mist system on the lathe, they simply turned on the compressed air and let the lathe do the work.  They were able to take what had recently been around a three hour machine job with heavy wear on tooling to a two hour job, no finish pass was needed on the part, and their tools weren’t completely spent by the end of the job.

They got the part back into the machine, made adjustments, and then went to work getting the machine back into production.

Right now, if you would like to try out a Cold Gun Aircoolant System you can order before 12/31/21 and you will receive a free Dual Point Hose Kit with your qualified purchase.

Dual Point Hose Kit

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

What Is A Coanda Profile?

The big thing that sets engineered products like EXAIR Intelligent Compressed Air Products apart from other devices is the engineering that goes into their design.  Several principles of fluidics are key to those designs:

The one I wanted to discuss today, though, is the Coanda Effect, what it means for our engineered compressed air products, and what they can do for you:

The Coanda effect is named after Henri Coandă, who was the first to use the phenomenon in a practical application…in his case, aircraft design.  He described it as “the tendency of a jet of fluid emerging from an orifice to follow an adjacent flat or curved surface and to entrain fluid from the surroundings so that a region of lower pressure develops.”  Put simply, if fluid flows past a solid object, it keeps flowing along that surface (even through curves or bends) and pulls surrounding fluid into its flow.  Here’s a demonstration, using an EXAIR Super Air Amplifier and a plastic ball:

What’s interesting here is that the Super Air Amplifier is not only DEMONSTRATING the Coanda effect, it’s also USING it:

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

EXAIR Standard and Full Flow Air Knives also have Coanda profiles that the primary (compressed air) flow follows, and uses, to entrain “free” air from the surrounding environment:

Compressed air flows through the inlet (1) to the Standard Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces optimize entrainment of air (4) from the surrounding environment.

EXAIR Air Wipes can be thought of as “circular Air Knives” – instead of a Coanda profile along the length of an Air Knife, an Air Wipe’s Coanda profile is on the ring of the Air Wipe, which entrains surrounding air into a 360° ring of converging air flow:

Air Wipe – How it works

So that’s the science incorporated in the design of our products.  But what does it mean to the user?

  • Efficiency.  Pulling in a tremendous amount of “free” air from the surrounding environment means minimal consumption of compressed air, while still getting a hard hitting, high velocity air flow.
  • Sound reduction.  This air entrainment also creates a boundary layer in the air flow, resulting in a much quieter air flow than you get from a simple open-end blow off.

EXAIR Corporation is committed to helping you get the most out of your compressed air system, and thanks to Mr. Coandă, that includes reducing your compressed air consumption and noise levels.  If you’d like to find out more, give me a call.

Russ Bowman, CCASS




Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Bifurcation Of Air – The Wonders of Science That Is The Vortex Tube

EXAIR has provided the benefits of vortex tube technology to the industrial world since 1983. Prior to that, French scientist George Ranque wrote about his discovery in 1928 calling it the tube tourbillion. But it wasn’t until German physicist Rudolf Hilsch’s research paper in 1945 on the wirbelrorhr or whirling tube, that the vortex tube entered the minds of commercial engineers. Nearly 60 years later, EXAIR is a leading provider for cooling products utilizing vortex tube technology.

More than 2,000 BTU/hr in the palm of your hand!

EXAIR Vortex Tubes produce a cold air stream down to -50° F and are a low cost, reliable, maintenance-free (there are no moving parts!) solution to a variety of spot cooling applications. These applications span a wide variety of industries and include cooling of electronic controls, soldered parts, machining operations, heat seals, environmental chambers, and gas samples. We’re always finding compelling new cooling opportunities for the vortex tubes.

How a Vortex Tube Works

So how does it produce the cooling stream? Compressed air is plumbed into the side port of the Vortex Tube where it is ejected tangentially into the internal chamber where the generator is located. The air begins flowing around the generator and spinning up to 1 million RPM toward the hot end (right side in the animation above) of the tube, where some hot air escapes through a control valve. Still spinning, the remaining air is forced back through the middle of the outer vortex. Through a process of conservation of angular momentum, the inner stream loses some kinetic energy in the form of HEAT to the outer stream and exits the vortex tube as COLD air on the other side.

The adjustable control valve adjusts what’s known as the cold fraction. Opening the valve reduces the cold air temperature and also the cold airflow volume. One can achieve the maximum refrigeration (an optimum combination of temperature and volume of flow) around an 80% cold fraction. EXAIR publishes performance charts in our catalog and online to help you dial into the right setting for your application, and you can always contact a real, live, Application Engineer to walk you through it.

EXAIR manufactures its vortex tubes of stainless steel for resistance to corrosion and oxidation. They come in small, medium and large sizes that consume from 2 to 150 SCFM and offer from 135 to 10,200 BTU/hr cooling capacity. Each size can generate several different flow rates, dictated by a small but key part called the generator. That generator can be changed out to increase or decrease the flow rate.

While operation and setup of an EXAIR Vortex Tube are easy, its performance will begin to  decrease with back pressure on the cold or hot air exhaust of over 3 PSIG. This is a key  when delivering the cold or hot airflow through tubes or pipes. They must be sized to minimize or eliminate back pressure.

The Vortex Tube is integrated into a variety of EXAIR products for specific applications, like the Adjustable Spot Cooler, the Mini Cooler, the Cold Gun Aircoolant System and our family of Cabinet Cooler Systems.

If you would like to discuss your next cooling application, please contact an Application Engineer directly and let our team lead you to the most efficient solution on the market.

Brian Farno
Application Engineer