Why Dryers Are Needed in Compressed Air Systems

Air compressors are extremely proficient at compressing anything in the air they are intaking. With that air that is taken in, moisture is going to be present. The amount of moisture will all depend on where you are located geographically and the ambient conditions in the area. Here in Ohio, we experience all 4 seasons so the moisture content is higher in the air during the summer months, rather than the winter months. When this air is saturated with water vapor and the conditions are right, the air reaches a point it cannot hold any additional water vapor. This point is known as the dew point of the air and water vapor will begin to condense to form droplets.

When ambient air is compressed, heat is generated and the air increases in temperature. In most industrial compressed air systems, the air is then processed to an aftercooler, and that is where condensation begins to form. To remove the condensation, the air then goes into a separator which traps the liquid water. The air leaving the aftercooler is typically saturated at the temperature of the discharge, and any additional cooling that occurs as the air is transferred will cause more liquid to condense out of the air. To address this moisture, compressed air dryers are used.

It is critical to the quality of the system and components downstream that actions are taken to prevent this condensation in the air. Condensation is generally detrimental to any point of use application and or the piping that conveys the air. Rust and/or corrosion can occur anywhere in the piping, leading to scale and contamination of the compressed air and processes. When trying to dry products off using compressed air or using the air to atomize a liquid such as paint, adding in these contaminants and moisture will cost production losses.

There are several options when it comes to the type of dryer that one may consider installing on their compressed air supply side.

• Refrigerant Dryer – the most commonly used type, the air is cooled in an air-to-refrigerant heat exchanger.
• Regenerative-Desiccant Type – use a porous desiccant that adsorbs (adsorb means the moisture adheres to the desiccant, the desiccant does not change, and the moisture can then be driven off during a regeneration process).
• Deliquescent Type – use a hygroscopic desiccant medium that absorbs (as opposed to adsorbs) moisture. The desiccant is dissolved into the liquid that is drawn out. Desiccant is used up and needs to be replaced periodically.
• Heat of Compression Type – are regenerative desiccant dryers that use the heat generated during compression to accomplish the desiccant regeneration.
• Membrane Type– use special membranes that allow the water vapor to pass through faster than the dry air, reducing the amount of water vapor in the air stream.
The air should not be dried any more than is needed for the most stringent application, to reduce the costs associated with the drying process. A pressure dew point of 35°F to 38°F (1.7°C to 3.3°C) often is adequate for many industrial applications. Lower dew points result in higher operating costs.
If you have questions about compressed air systems and dryers or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR, and I or any of our Application Engineers can help you determine the best solution.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Wet-Dry Vacuum Converts Without Tools in 15 Seconds or Less!

In a recent video, I showcased our newest Industrial Housekeeping product, the EasySwitch Wet-Dry Vac. Throughout my years in metalworking as well as homeownership, I have honestly never used a wet-dry vacuum that is this easy to change operating modes from wet to dry or vice versa. So just how easy is it?

EasySwitch Wet-Dry Vac Mode Change Instructions

When writing out instructions on how to do this it takes a total of five steps for either direction. These five steps can easily be completed in less than 15 seconds and best of all, it is tool-free.

When changing over other wet/dry vacuums, whether it is a traditional electric vacuum like you may have at home or another pneumatic industrial vacuum on the market, the switchover process is cumbersome. There are typically fasteners or retainers that are necessary to hold the filters in place, filters can be poor quality and get damaged easily.  Small parts needed to hold filters in place like springs or retainer nuts can easily be lost, hard to manipulate and take additional time changing from liquid to dry modes or vice-versa. With the EasySwitch, the only fastener is a rubber latch that is attached to the filter hatch cover. This means operators can’t lose parts because they are all attached to the EasySwitch Lid. To convert from a dry vacuum to a wet vacuum the steps are simple.

  1. Turn off the compressed air and unlatch the rubber handle. This makes it possible to complete step two.
  2. Lift the filter hatch lid and let it rest on the hinge stop. This is all designed to be robust enough to easily support the weight of the EasySwitch unit as well as the air hose attached to it.
  3. Lift the filter, whether it is the HEPA rated filter or the standard filter, up and out of the lid.
  4. Close the filter hatch lid onto the edge gasket that stays firmly in place.
  5.  Latch the rubber handle/latch back into place and start processing liquid as needed.

That’s it, it takes less than 15 seconds in the video below (see it at 1:15) and I am pretty sure a speedcuber or cup stacker could do it even faster. Don’t believe me, want to test it out for yourself, we honor a 30-day guarantee on stock products. Get the EasySwitch Wet-Dry Vac in your facility and put it through your own rigorous testing. If it doesn’t perform to your liking, let us know and we will arrange for sending it back. Converting the vacuum from dry to wet isn’t the only thing that is fast, we also ship same day on orders for stock products (hint: all EasySwitch vacuums are stock product) received by 3 PM ET that are shipping within the US. (2 PM ET for orders billing and shipping to Canada.)

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Video Blog: EXAIR’s New EasySwitch Wet/Dry Vac Operation

EXAIR introduced our first Wet/Dry Vacuum in August. We have simplified the process of converting a vacuum from wet to dry (and dry to wet) materials. This can now be easily switched within 15 seconds due to its patent pending engineering and design. The video below is a quick rundown of just how easy it is to contain any industrial mess with the new compressed air powered vacuum from EXAIR. If you would like to discuss the EasySwitch Vacuum options and kits available from stock, please contact us.

Brian Farno, Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

EXAIR Super Air Amplifiers – Circulate, Blow, Dry, Cool, Vent

Super Air Amplifier

EXAIR manufactures a volume-type amplifier called the Super Air Amplifier. Not to be confused with its cousin, the pressure-type amplifier which increases air pressure, these devices increase the volume of air. This is a great benefit for circulating, cooling, blowing, drying and transferring materials like smoke fumes or lightweight items. With a range of applications, the EXAIR Super Air Amplifiers can be a simple solution for your company.

Super Air Amplifier – flow region

Why an EXAIR Super Air Amplifier? Like a fan, they are designed to move air. But fans use motors and blades to push the air toward the target. The fan blades “slap” the air which creates turbulent air flows and loud noises. The Super Air Amplifiers does not have any blades or motors to move the air. It just uses a Coanda profile and a patented shim to create a low pressure to draw in the air. With physics, it is much easier to pull than it is to push. The method in pulling air through the Super Air Amplifier makes a more efficient, uniform, and quiet operation to blow air.

How It Works

To expand, Coanda was named after a Romanian aerodynamic pioneer, Henri Coanda where he found a fluid flow phenomenon. He stated that “a jet of fluid emerging from an orifice to follow an adjacent flat or curved surface and to entrain fluid from the surroundings so that a region of lower pressure develops” (1). Since air is a fluid, it will react in the same way. The EXAIR Super Air Amplifiers create a high velocity air stream along an engineered profile. So, as the air “hugs” the profile, a low pressure is created which will draw in ambient air. The ratio between the volume of air produced compared to the volume of compressed air needed is called the amplification ratio. The higher the ratio, the more efficient the blowing device is. With the EXAIR Super Air Amplifiers, we can reach amplification ratios up to 25 to 1.

Super Air Amplifier Family

EXAIR manufactures and stocks five different sizes ranging from ¾” (19mm) up to 8” (203mm) in diameter. One of the unique features with the Super Air Amplifiers is that the inlet and outlet can be ducted for remote positioning. They are very compact and can fit into tight places. They do not have any moving parts to wear, or need electricity to run; or require any maintenance. They only need clean compressed air to work. One of the unique features of the EXAIR Super Air Amplifier is the patented shim which optimizes the low-pressure to draw in more ambient air. For extracting welding smoke, increasing cooling capacities, and moving material from point A to point B; the more air that can be moved, the better the performance. And the patented shim inside the EXAIR Super Air Amplifiers provides that. As an added bonus, they are OSHA compliant for safety and meet the standards for noise level and dead-end pressure.

Patented Air Amplifier Shims

EXAIR offers the Super Air Amplifiers in kits for a more complete system. The kit will include a filter separator, a pressure regulator and a Shim Set. The filter can remove debris and water from the compressed air line to keep the Super Air Amplifier and your product clean. The regulator is used to make “fine” adjustments to the blowing volume while the Shim Set is used as a “coarse” adjustment. The Shim Set includes different thicknesses of shims to set the gap. The Super Air Amplifiers come standard with a 0.003” (0.08mm) thick shim for the sizes ¾” (19mm) up to 4” (102mm), and a 0.009” (0.23mm) thick shim for the 8” (203mm) size. The Shim Set will include (1) 0.006” (0.15mm) and (1) 0.009” (0.23mm) shim for the models 120220 through 120224 or (1) 0.015” (0.39mm) shim for the model 120228. EXAIR sells these kits as one model number for simple ordering and for proper sizing of the accessories to not hinder the performance of the Super Air Amplifiers.

120224DX

To optimize the system even more, EXAIR also offers a Deluxe Kit for the Super Air Amplifier models. This will include the accessories in the kit above, plus an Electronic Flow Control, or EFC. This exclusive instrument uses a photoelectric eye to start a timing sequence to control a solenoid valve. So, when a part is not in front of the Super Air Amplifier, the compressed air is turned off. This will save you even more money and maximize your efficiency to only blow air when needed. They can be ordered with the kits by placing a “DX” at the end of the model number, such as 120224DX.

With the today’s cost to make compressed air, it is important to use it as efficiently as possible. The EXAIR Super Air Amplifiers have the ability to give effective blowing to remove debris, dry parts, transport material, or cool objects without using a large amount of compressed air. EXAIR has the Super Air Amplifiers in stock and as always, EXAIR offers a 30-day unconditional guarantee for our customers in the U.S. and Canada to try them out. If you have any questions about the Super Air Amplifiers or if you would like to discuss your application, an Application Engineer at EXAIR will be happy to help you.

 

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

 

(1) Note: Coanda effect by Wikipedia.org https://en.wikipedia.org/wiki/Coand%C4%83_effect