EXAIR Siphon Fed Air Atomizing Liquid Spray Nozzles

Amongst EXAIR’s continuously growing product offering, some of the newest are a family of Air Atomizing Liquid Spray Nozzles that does not require a pressurized liquid source. These are known as the Siphon Fed Air Atomizing Nozzles. These nozzles can be easily implemented where a tank can be installed and lower the cost of the installation by not requiring a liquid pump, just point of use compressed air.

Siphon Fed model

This action is done by the unique design of the air cap.  As the velocity of the air passes through the air cap, low pressure is created by a venturi.  The Siphon Fed Atomizing Nozzles can draw liquid from a suction height of 36” (91 cm), or gravity fed. They are manufactured from 303 stainless steel for durability and corrosion resistance. The Siphon Fed models can spray viscous fluids up to 200 centipoises and are used in many applications like rinsing, coating, cooling, quenching, humidification, or dust control. The images below showcases how simple the setup can be for the siphon and gravity fed installations.

EXAIR Siphon Fed Nozzles work with non-pressurized liquids, either siphoned (left) or gravity fed (right.)

EXAIR carries three different body sizes, 1/8” NPT, ¼” NPT, and ½” NPT ports; so, you can create a light mist or a heavy spray of liquid.  The maximum liquid flow rate is controlled by the air cap and liquid cap combination.  A unique feature of the EXAIR Atomizing Nozzle is that the caps are easily interchangeable for each body size to modify the spray patterns, control the amount of fluid, and reduce any downtime if cleaning is required.  The video below shows just how easily the changeover is done.

In addition to the three different inlet/body sizes, we also offer the Siphon Fed in both a round spray pattern or a flat fan spray pattern. These are also controlled by the air and liquid cap combination. This means it is easy to convert a round pattern that may be needed for a job, over to a flat fan pattern for the next setup. Each pattern is also available in several flow rates of liquid and air to dial in the performance required by the application.

Siphon Fed Air Atomizing Spray Nozzles

Additionally, if you would like to positively shut the liquid flow off from the nozzle in order to prevent drips, over use of liquid, or to shut off the gravity fed liquid when not needed, the No-Drip versions of these nozzles is also available. This is easily controlled by simply reducing the compressed air operating pressure to below the designated cracking pressure of the patented No-Drip valve.

No Drip Siphon Fed Round Pattern Atomizing Nozzle

If you would like to discuss which spray nozzle is best suited for your application, please reach out to an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Hazardous Location AND Overheating Electronics? We Have You Covered!

Here in Ohio, we like to think we know a lot about the weather. Did you know there are more than 4 seasons? Heck, we have at least two Winters, and then a Pre-Summer, Spring, Summer, Heat is still coming – make it stop season, and Fall. Don’t forget the construction season where the lovely orange cones and barrels bloom on every major roadway, and then we also like to throw in brood weeks for the cicadas every now and then. Yeah, we get a full gambit of weather and the past week has brought out some heat. I know this isn’t just Ohio, we get calls from around the globe of atmospheric conditions that have caused issues within control panels. Some of these panels are in areas where the No Smoking sign is more than just a suggestion to better your health.

1 – Dust Explosion

That’s right, there are areas in manufacturing facilities that are governed by the standard due to a variety of conditions resulting in what is known as Hazardous Locations. NFPA and UL have a list of standards breaking these down into separate Classes, Divisions, and Temperature Classes. If you want all the details, the NFPA code is around 908 pages, cover to cover. The Classified UL mark shown below is one way of knowing that a product has been tested to these stringent standards and is okay to use in clearly marked environments.

UL Classified Markings

EXAIR offers Cabinet Cooler Systems that will meet these stringent standards and keep your enclosures cool in order to keep your production up and running. The top three tiers that we meet are:

  • Class I Div 1, Groups A, B, C and D
  • Class II Div 1, Groups E, F and G
  • Class III

The HazLoc Cabinet Cooler Systems are available in 8 different cooling capacities from 1,000 Btu/hr to 5,600 Btu/hr. and are manufactured to work in conjunction with a purged and pressurized control system. As well as with or without thermostatic control.

EXAIR’s Hazarous Location Cabinet Cooler Systems maintain Type NEMA 4/4X Integrity and are CE Compliant.

If you would like help sizing the correct system for your electrical panels, feel free to use the link, or contact an Application Engineer to discuss the applications and get one sized while on the phone with us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – Dust explosion 05.jpg, Hans-Peter Scholz, October 7, 2009, retrieved from https://commons.wikimedia.org/wiki/File:Dust_explosion_05.jpg

Round and Round They Go…. Rotary Compressors: How They Work

Positive-displacement and dynamic displacement compressors are the two high level principles for the generation of compressed air or gas. Positive displacement types are the most common found in industrial facilities. These units draw ambient air into a chamber which it seals off and then works to compress and squeeze it down into a smaller volume. The air is then discharged into the outlet system of the compressor. Out of the many types of positive displacement compressors, today we are going to discuss the rotary style positive displacement air compressors.

1 – Simplified Rotary Vane Compressor



These are available in both lubricant-free as well as lubricant-injected versions. The main function of the compressor is the same, both have two inter-meshing rotors what pull air into the inlet port and then after the rotational processing of the compressor the air is discharged through a discharge port. The in between of the ports is where the important information lies. The air after being sucked into the inlet gets pulled in between two lobes and the stator. As the air is being trapped the space between the lobes becomes increasingly smaller, thus increasing the pressure of the air transferring it to the discharge port.

The lubricated versions will often help to dissipate the heat that is created as the air is being compressed. This lubricant is then possible to transfer into the compressed air stream and must be removed before a point of use product if lubricant-free air is needed for the process. These compressors rank amongst the lower efficiencies in the positive displacement air compressors.

If you are visual learner, feel free to take a few minutes for the video below.

2 – Rotary Compressor Operation


If you would like to discuss the way to get the most out of your compressor, no matter the type, contact an Application Engineer and let us help you determine the most efficient way to use the air effectively.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – Rotary vane.png – R. Castelnuovo, 10/20/2005 – retrieve from https://commons.wikimedia.org/wiki/File:Rotary_vane.png

2 – Rotary compressor operation – HVACRinfo.com – 8/1/2016 – retrieved from https://www.youtube.com/watch?v=fxDEK3Ymx30

Choosing Max Refrigeration Or Max Cold Temp Vortex Tubes

Vortex Tubes have been studied for over 90 years. These “phenoms of physics” and the theory behind them have been discussed on this blog before. But, when it comes to the practical use of a Vortex Tube it is good to discuss how to correctly select the model that may be needed in your application. The reason being, there are different flow rates and an option for maximum refrigeration or maximum cold temperature.

The tendency is to say, well I need to cool this down as far as possible so I need the coldest air possible, give me the maximum cold temperature. More times than not, the maximum cold temperature model is not the best solution for your application because maximum cooling power and maximum cold temperature are not the same thing.  A maximum cold temperature Vortex Tube is best for spot cooling processes that require greater than 80F temperature drop covering a small area – spot cooling at its finest. Theis very cold air is delivered in a low volume. A maximum cooling power Vortex Tube is the best mix of cold temperature and volume of flow. This cold air (50F-80F temperature drop) is delivered at higher volumes which has the ability to remove more heat from certain processes. If you do not know which is bets for your application, follow these next steps. 

The first step, is to call, chat, or email an Application Engineer so that we can best outfit your application and describe the implementation of the Vortex Tube or spot cooling product for you. You may also want to try and take some initial readings of temperatures. In a perfect world you would be able to supply all of the following information to us, but recognizing how imperfect it all is…some of this information could go a long way toward a solution. The temperatures that would help to determine how much cooling is going to be needed are listed below:

Part temperature:
Part dimensions:
Part material:
Ambient environment temperature:
Compressed air temperature:
Compressed air line size:
Amount of time desired to cool the part:
Lastly desired temperature:

With these bits of information, we can use standard cooling equations to determine what temperature of cold air stream and volume of air is needed in order to produce the cooling and your desired outcome. To give an idea of some of the math we have used, check out this handy educational video of how Newton’s law of cooling was used to calculate the amount of time it takes to cool down a room temp beverage in an ice cold refrigerator. 

If you would like to discuss a cooling application, heating application, or any point of use compressed air application, contact an Application Engineer today.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – ThinkWellVids – Newton’s Law of Cooling – Feb. 27, 2014 – retrieved from https://www.youtube.com/watch?v=y8X7AoK0-PA