OSHA 29 CFR 1910.95 (a) – It’s a Noise Exposure Standard, Not Just a Confusing Number

Strings of numbers and characters can often appear daunting.  For instance, if I wrote in binary code it would be a string of ones and zeros.  (01000101 01101110 01100111 01101001 01101110 01100101 01100101 01110010 01101001 01101110 01100111 00100000 01101001 01110011 00100000 01000001 01010111 01000101 01010011 01001111 01001101 01000101.) That can look like gibberish and cause concern if unknown or it can make sense to programmers and people familiar with binary code.

Other alphanumeric strings may cause some concern for industry professionals.  Take, for instance, OSHA standards. The OSHA standard 29 CFR 1910.95 (a) may be unfamiliar to some, and thus concerning. Many Environmental Health and Safety Engineers will recognize this code.  It is an OSHA standard that revolves around the amount of time an employee is permitted to be exposed to specific sound levels. These sound levels are all based on the weighted sound level of the noise the operators are exposed to. To better understand how the octave and frequency of the sound play into this, there is a chart provided below.

Equivalent A-Weighted Sound Level Chart – (1)

The weighted sound level is the level at which a Digital Sound Level Meter will read the current level of noise within an environment. This scale is then used to move further into the OSHA directive that we focus on helping companies meet to best provide safe environments for their employees to work in.

If you notice, the lowest weighted sound level is 90 dBA, this is also the lowest-rated noise level that OSHA speaks of in 1910.95(b)(2). It has been shown that noise levels over this level for extended periods will result in permanent hearing loss. The standard then goes on to discuss the duration an employee can be exposed to noise levels even with the use of personal protective equipment as well as even impulsive or impact noise.  The table of permissible time limits is shown below.

Permissible Noise Exposures (2)

As you can see from the table above provided by OSHA, any noise level that an operator is exposed to for eight hours cannot exceed 90 dBA. Noises within an industrial environment can also be variable throughout the day. For instance, the operator stands outside of a sheet metal press and the concussive strike on the press gives off a 90 dBA strike for every stroke of the press. This would not be a continuous noise level. Maybe the operator is operating a CNC machine that is cutting a nest of parts and uses a handheld blowgun to remove debris and coolant from the parts before taking them from their fixture. This blowgun is not used continuously and therefore would not be rated as such for the exposure time. A time study would be conducted on the average length of time the operator is utilizing this gun along with the level of noise it produces during use. OSHA then gives a calculation to use to appropriately combine the sound level while the gun is being used and when it is not in use. That equation is written out below.

Mixed Environment Exposure Fraction
C1/T1+C2/T2+… = ____
Total Exposure Fraction
Cn/Tn = ____

Where:
C1 = Duration of time for a specified noise level
T1 = Total time of exposure permitted at that level
Cn = Total time of exposure at a specified noise level
Tn = Total exposure time permitted at that level

Should the summation of the fractions for different exposures be greater than the Total Exposure fraction, the summation value should be used. As mentioned above, a time study on exposure to noise levels will be needed to obtain the information needed for this type of study. Once the study is done the process can proceed to the next level within the OSHA standard which is a hearing conservation program.

I would like to interject a small side-step at this point. Rather than rolling straight into the implementation of PPE which is proven to be the lowest reliable factor of protection by the CDC and NIOSH. If any of these noise levels being generated are due to the use of compressed air points of use, EXAIR can potentially lower the noise of these point of use applications. In the events, open blowoffs or “band-aid” fixes are in place to keep processes running, and Engineered Solutions can easily be implemented that will reduce the noise level produced by this operation. Whether it is on the handheld Safety Air Gun in the hands of a CNC operator, or if it is a part/scrap ejector that is blowing the sheet metal press out after every strike, we have products that have proven time over time using an Engineered Solution will save air, reduce noise levels, and still get the job done.

If you would like to discuss OSHA directives revolving around compressed air, share with us a recent citation you received from an inspector for this standard, or just discuss compressed air usage in general, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

1 – Equivalent A-Weighted Sound Level Chart – Retrieved from OSHA.Gov – https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=9735&p_table=standards

2 – Permissible Noise Exposures – Retrieved from OSHA.Gov – https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=9735&p_table=standards

 

Benefits and Options for Safety Air Guns

EXAIR Safety Air Guns are available, from stock, with Chip Shields.

Throughout industrial environments, there are often manual cleaning or blow-off applications that are performed with compressed air. These operations vary in frequency, intensity, and how critical to the operation they may be.

When it comes to OSHA standards and comfort of operators, many of the solutions found in manufacturing do not meet the standards and are dangerous to operators.

This is where EXAIR steps in and focuses on the end application while coupling a high performing engineered solution with an ergonomic and safe handheld safety air gun. In other words, EXAIR safety air guns are safe, easy to use, and typically reduce compressed air consumption. Currently, we offer four types of handheld safety air guns.

The VariBlast Compact Safety Air Gun:

This is my personal favorite in our current lineup of safety air guns.  The compact size fits comfortably in the hands of operators. The multi-finger trigger with patented VariBlast function is easily controlled for extended periods of time. The VariBlast Compact Safety Air Gun also has two compressed air inlets. This gives the ability to plumb compressed air into the bottom 1/4″ FNPT port or the top 1/4″ FNPT which a safe way to run air hoses for virtually any work station. The 1/8″ NPT outlet permits enough airflow to operate up to our High Power 1″ Flat Super Air Nozzle all the way down to our Atto Super Air Nozzle.  The patented design also delivers variable flow from any of the nozzles attached to operate anywhere from a gentle breeze up to a forceful blast.

The VariBlast Compact Safety Air Gun can also be coupled with an extension up to 72″ lengths as well as the Chip Shield to meet or exceed OSHA standards for compressed air cleaning.

The Soft Grip Safety Air Gun:

This safety air gun is the next step up in size and options as far as force and flow of compressed air go. The four-finger trigger and integrated hook design make this safety air gun ideal for industrial environments where a little more force is needed from the air to blowoff products.  The Soft Grip Safety Air Gun offers a 1/4″ NPT female thread inlet on the bottom and is available with up to an 1106 1/2″ Large Super Air Nozzle on the discharge.  This will deliver up to 60 SCFM of compressed air and provide 3.3 lbs of force from 12″ away.  The Soft Grip Safety Air Guns are also available with up to a 72″ extension and a chip shield.

Heavy Duty Safety Air Guns

Heavy Duty Safety Air Gun with extension.
eg. 1350-72

The Heavy Duty Safety Air Gun is even more robust than the Soft Grip Safety Air Gun and showcases a 3/8″ NPT female inlet to provide enough airflow to operate up to our model 1106 Large Super Air Nozzle as well to provide 60 SCFM  of airflow and provide 3.3 lbs of force.  Extensions are available in lengths up to 72″ with the addition of the chip shield.

 

Super Blast Safety Air Guns

Super Blast Safety Air Gun makes short work of large area cleanup.

The final Safety Air Gun offered is the Super Blast Safety Air Guns which are offered in four different NPT sizes. Ranging from 3/8″ NPT up to 1-1/4″ NPT and flows and forces from 56 SCFM providing 3.2 lbs of force up to 400 SCFM giving off 23 lbs of force.  These are available with an optional 3′ or 6′ extension to provide a robust blast for the heaviest cleaning or blowoff operation.

No matter the application, or amount of debris, EXAIR Safety Air Guns have an option that will fit the need while providing a safe and efficient solution. If you would like to discuss these further, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Back To The Basics: Process Improvement Basics

We understand that it is more important than ever to realize savings within manufacturing processes. EXAIR can reduce compressed air consumption and provide simple ROI in a matter of weeks in MANY cases.

In the hustle and bustle of the daily grind wherever you are, there are certain processes that become muscle memory for you and certain processes that just work and don’t need any attention. Whether it be a login process for your computer network, the number of steps it takes to fill your coffee cup, or the compressed air applications in your facility.

You know what I am talking about, these items begin to get glanced over and often become overlooked. When going through process improvements or troubleshooting, it is easy to overlook processes which are not causing trouble or that have become “acceptable” because they are producing. EXAIR firmly believes compressed air applications are ripe for improvement, and our product lines are built to replace inefficient compressed air products with engineered and efficient solutions.

When evaluating a process for improvement creating a baseline is the necessary start. With this, we can then start to draw a realistic target of where the process needs to be in order to be optimized and document the changes from our starting baseline.

Much like the 6 Steps to Compressed Air Optimization, which starts with measuring compressed air consumption to provide a baseline.  Sometimes, this may require the installation of a Digital Flowmeter, others it may include taking advantage of our Efficiency Lab service for us to get a baseline of what air consumption and other key performance indicators are for your application.

Looking to “go green?” We can help.

Once we have the baseline and a target, we can then begin to design an improvement process. Whether this is implementing better controls for the air, such as pressure regulators, or implementing controllers such as the Electronic Flow Control, it may even be simply installing an engineered solution.  Once an improvement has been implemented we can then go on to the next testing phase to again gather data to see how much air was saved from the baseline.

EXAIR’s Free Efficiency Lab

Once the performance of the new process is determined then we can take the new cost of ownership numbers and give a simple return on investment back to determine what the actual savings by implementing these process improvements have amounted to.

The below example is from a customer who had already improved their static elimination application by using our Super Ion Air Knife instead of a homemade pipe with drilled holes. They further optimized the application with our Electronic Flow Control.

If you would like to talk through methods for process improvement or how we can help you determine these costs, please reach out.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

EXAIR NEW Product Offering – Pressure Sensing Digital Flowmeters

Six Steps to Optimizing Your Compressed Air System

The first step to optimizing compressed air systems within an industrial facility is to get a known baseline. To do so, utilizing a digital flowmeter is an ideal solution that will easily install onto a hard pipe that will give live readouts of the compressed air usage for the line it is installed on.  There is also an additional feature that we offer on the Digital Flowmeters that can help further the understanding of the compressed air demands within a facility.

The Pressure Sensing Digital Flowmeters are available from 2″ Sched. 40 Iron Pipe up to 8″ Sched. 40 Iron Pipe.  As well as 2″ to 4″ Copper pipe.  These will read out and with the additional Data Logger or Wireless Capability options record the information. When coupled with the wireless capability an alarm can be set for pressure drops that give live updates on the system as well as permits data review to see trends throughout the day of the system.

EXAIR Digital Flowmeters w/ Wireless Capabilities

Generating a pressure and consumption profile of a system can help to pinpoint energy wasters such as timer-based drains that are dumping every hour versus level based drains that only open when needed. A scenario similar to this was the cause of an entire production line shut down nearly every day of the week for a local facility until they installed flowmeters and were able to narrow the demand location down to a filter baghouse with a faulty control for the cleaning cycle.

If you would like to discuss the best digital flowmeter for your system and to better understand the benefits of pressure sensing, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF