You Don’t Need to Spend Thousands to Optimize Your Compressed Air System

There is no denying it, saving compressed air is a process.  This process often involves some type of energy audit or at the very least an evaluation of something going wrong with production and a way to improve it.  Many programs, consultants, and sales reps will devise a solution for the problem.

Often times the solution is to create a more efficient supply side of the compressed air system. The supply side is essentially everything within the compressor room or located in close proximity to the actual air compressor. While optimizing the supply side can amount to savings, many of these solutions and services can involve great expense, or capital expenditure processes.  These processes can often lead to delays and continued waste until the solution is in place.  What if there was a way to lower compressed air usage, save energy, solve some demand issues on the compressed air system and save some money while the capital expenditure process goes through for the larger scale project.

These solutions are a simple call, chat, email or even fax away. Our Application Engineers are fully equipped to help determine what points of your compressed air demand side can be optimized. The process generally starts with our Six Steps To Compressed Air Optimization.

6 Steps from Catalog

Once the points of use are evaluated the Application Engineer can give an engineered solution to provide some relief to the strain on your compressed air supply side.  For instance, an open copper pipe blow off that is commonly seen within production environments can easily be replaced with a Super Air Nozzle on the end of a Stay Set Hose that will still bend and hold position like the copper pipe does while also saving compressed air, reducing noise level, and putting some capacity back into the supply side of the compressed air system.

engineered nozzle blow offs
Engineered solutions (like EXAIR Intelligent Compressed Air Products) are the efficient, quiet, and safe choice.

One of the key parts to the solutions that we offer here at EXAIR is they all ship same day on orders received by 3 PM ET that are shipping within the USA. To top that off the cost is generally hundreds, rather than thousands (or tens of thousands) of dollars. Well under any level of a capital expenditure and can generally come in as a maintenance purchase or purchased quickly through the supply cribs.  Then, to take this one step further, when the EXAIR solution shows up within days and gets installed EXAIR offers for you to send in the blow off that was replaced and receive a free report on what level of compressed air savings and performance increases you will be seeing and provide a simple ROI for that blow off (though we would also encourage a comparison before a purchase just so you have additional peace of mind).

This amounts to saving compressed air and understanding how much air is being saved, adding capacity back into your supply side which will reduce strain on the air compressor, give the ability to increase production while the capital expenditure for the end solution of controls and higher efficiency on the supply side is approved to then save even more compressed air and energy.

The point is this, savings and efficiency doesn’t have to involve a capital expenditure, if that is the end game for your project that is great! Let EXAIR provide you a solution that you can have in house by the next business day to save money NOW and then put that savings towards another project. No matter the method, it all starts with a call, chat, email or fax.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Watch EXAIR Webinars On-Demand

That’s right, just like your local cable or satellite TV provider, EXAIR offers On-Demand content that can be streamed and used for training, education, help with cost justification, or improve awareness around compressed air costs and safety.

The best part about this content is that you don’t have to pay for it, simply register on our website (where your information is not shared) and go to the Webinars section of our Knowledge Base.  Then gain access to the library of five webinars that have all been broadcast around compressed air safety, efficiency, and optimization.

EXAIR.com – Webinars On-Deman

The current On-Demand offering is listed below:

Intelligent Compressed Air Solutions for OSHA Compliance
Intelligent Solutions for Electrical Enclosure Cooling
Optimize Your Compressed Air System in 6 Simple Steps
Simple Steps for Big Savings
Understanding Static Electricity

The most recent webinar we created is currently only On-Demand for registered attendees and will soon be added to the Knowledge Base library.  If you did not get to see it live, the content was extremely helpful for anyone that works within a facility that uses compressed air.  Use This Not That – 4 Common Ways To Save Compressed Air In Your Plant, keep an eye out for the release date in our On-Demand section.

If you would like to discuss any of the webinar topics further, please feel free to reach out to an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Return On Investment: Does It Matter, And How Much?

I have a friend who participates in a process known as “extreme couponing.” She has multiple subscriptions to the Sunday edition of our major newspaper, and a couple of local papers that also have coupon inserts. When I see her at the grocery store, she’s got two 4″ binders full of baseball card holders, all stuffed with multiples of clipped coupons, organized by store aisle. The insane amount of money saved is a big factor in her being able to be a stay-at-home mother, which is something else she’s pretty good at.

If you get stuck at step one…or even two…extreme couponing may not be for you!

Now, extreme couponing isn’t for everyone. Even beginners to the process can buy a year’s worth of paper towels for next to nothing. However, that may take up so much room in their house that they need to rent a storage facility for other belongings that folks like you and me simply keep in the garage or basement. It also takes a LOT of time and effort to do it right – as well as discipline. Saving half (or more) on a truckload of stuff you don’t need (or will never use) is a waste of money, time, and space. In fact, I know people who have abandoned extreme couponing for those very reasons…the “return on investment” just isn’t there.

That’s the deal in industry too.  Anyone tasked with finding and exploiting efficiencies – or finding and eliminating inefficiencies – is going to be looking at return on investment.  Like extreme couponing, though, it has to make sense in all aspects of the operation.  For example:

*An OEM taking advantage of a quantity discount for components or subassemblies has to not only have the storage space available, but also has to consider the turnover rate…it costs money to keep product on the shelf.

*A machine shop considering a tooling upgrade has to compare the cost difference with the increased performance and/or lifespan of the “new and improved” product.  A tool that costs 10% more but lasts twice as long is probably a good deal.  A tool that costs twice as much but lasts 10% longer might not provide the “bang for the buck.”

*Any facility, before switching a service or utility provider, will “run the numbers” on promotional rates, contract terms, etc. before making a commitment.

Unlike extreme couponing, EXAIR makes it easy – and beneficial – to evaluate the return on investment:

*Our catalog (if you don’t have the latest, get it here) has complete performance & operational data on all of our products.  This is great if you know what you want it to do.

*If you’re not quite sure, our catalog also has a good number of actual application write-ups for most of our Intelligent Compressed Air Products.  You may be able to find something that’s similar to what you want to do, and further inform your selection from there.

*Once you’ve chosen a product, you can use the Calculator Library on our website to determine actual dollar cost savings associated with replacing a current compressed air powered device with an EXAIR product.

*Application Engineers are available to discuss your application and/or product selection via phone, email, or Live Chat.

*No matter how detailed the discussion, and how confident a plan we may make, the age-old saying about how it “looked good on paper” proves itself every now and again.  When this happens, all catalog products are covered by our 30 Day Unconditional Guarantee.  If you’re not satisfied for any reason within 30 days of purchase, we’ll arrange return for full credit.

*Let’s assume that we’re pretty good at this (because we are) and it actually DOES work out (because it usually does) – we can calculate your new (and improved) operating costs and compare them with the cost of your previous devices.  If you don’t have the instrumentation (flow meters, sound level meters, etc.,) this is a free service we provide in our Efficiency Lab.  Send it in, and we’ll do a full performance test & issue a comprehensive report, all at no charge.  And if you qualify for a Case Study, we can even save you some money on your next order.  Contact me for more details if you’re interested.

Free testing. Verifiable data. EXAIR Efficiency Lab.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

 

Coupon Pile Stock Photos courtesy of Carol Pyles  Creative Common License

ROI – Return on Investment

Return on Investment (ROI) is a measure of the gain (preferably) or loss generated relative to the amount of money that was invested.  ROI is typically expressed as a percentage and is generally used for personal financial decisions, examining the profitability of a company, or comparing different investments.  It can also be used to evaluate a project or process improvement to decide whether spending money on a project makes sense.  The formula is shown below-

ROI

  • A negative ROI says the project would result in an overall loss of money
  • An ROI at zero is neither a loss or gain scenario
  • A positive ROI is a beneficial result, and the larger the value the greater the gain

Gain from investment could include many factors, such as energy savings, reduced scrap savings, cost per part due to increased throughput savings, and many more.  It is important to analyze the full impact and to truly understand all of the savings that can be realized.

Cost of investment also could have many factors, including the capital cost, installation costs, downtime cost for installation, and others.  The same care should be taken to fully capture the cost of the investment.

Example – installing a Super Air Nozzles (14 SCFM compressed air consumption) in place of 1/4″ open pipe (33 SCFM of air consumption consumption) .  Using the Cost Savings Calculator on the EXAIR website, model 1100 nozzle will save $1,710 in energy costs. The model 1100 nozzle costs $37, assuming a $5 compression fitting and $50 in labor to install, the result is a Cost of Investment of $92.00. The ROI calculation for Year 1 is-

ROI2

ROI = 1,759% – a very large and positive value.  Payback time is only 13 working days.

Armed with the knowledge of a high ROI, it should be easier to get projects approved and funded.  Not proceeding with the project costs more than implementing it.

If you have questions regarding ROI and need help in determining the gain and cost from invest values for a project that includes an EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Calculating Compressed Air Cost & Savings Made Easy

If you have ever looked through our catalog, website, blog, twitter feeds, or even our Facebook page, you will see that we can almost always put a dollar amount behind the amount of compressed air you saved by installing EXAIR’s Intelligent Compressed Air Products.   No matter which platform we use to deliver the message, we use the same value for the cost of compressed air which is $.25 per 1,000 Standard Cubic Feet of compressed air. This value is derived from average commercial and industrial energy costs nationwide, if you are on either coast this value may increase slightly. On the positive side, if your cost for compressed air is a bit more, installing an EXAIR product will increase your savings.

So where does this number come from?   I can tell you this much, we didn’t let the marketing department or anyone in Accounting make it up.   This is a number that the Engineering department has deemed feasible and is accurate.

To calculate the amount we first look to what the cost per kilowatt hour is you pay for energy.  Then we will need to know what the compressor shaft horsepower  of the compressor is, plus the run time percentage, the percentage at full-load, and the motor efficiency.

If you don’t have all of these values, no worries.   We can get fairly close by using the industry accepted standard mentioned above, or use some other general standards if all you know is the cost of your electricity.

The way to calculate the cost of compressed air is not an intense mathematical equation like you might think.  The best part is, you don’t even have to worry about doing any of the math shown below because you can contact us and we can work through it for you.

If you prefer to have us compare your current compressed air blow off or application method to one of our engineered products, we can do that AND provide you a report which includes side by side performance comparisons (volume of flow, noise, force) and dollar savings. This refers to our free Efficiency Lab service.

EXAIR's Efficiency Lab is a free service to all US customers.
EXAIR’s Efficiency Lab is a free service to all US customers.

If you already know how much air you are using, you can use the Air Savings Calculators (USD or Euro) within our website’s knowledge base. Just plug in the numbers (EXAIR product data is found on our website or just contact us) and receive air savings per minute, hour, day and year. We also present a simple ROI payback time in days.

Now, back to the math behind our calculation.
Cost ($) =
(bhp) x (0.746) x (#of operating hours) x ($/kWh) x (% time) x ( % full load bhp)
——————————————————————————————————————————
Motor Efficiency

Where:
bhp
— Compressor shaft horsepower (generally higher than motor nameplate Hp)
0.746 – conversion between hp and KW
Percent Time — percentage of time running at this operating level
Percent full-load bhp — bhp as percentage of full load bhp at this operating level
Motor Efficiency — motor efficiency at this operating level

For an average facility here in the Midwest $0.25/1,000 SCF of compressed air is accurate.   If you would like to attempt the calculation and or share with us your findings, please reach out to us.   If you need help, we are happy to assist.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

 

There’s More Than 1 Way To Blow Some Air

Just today I spoke with a customer who is threading the ends of pipes and needs to blow the coolant and chips out of the threads.   The pipes range from 4″ to 9 – 5/8″ Diameters.  They are all threaded then fed into a trough and pushed down line to the next operation.

PEO ACWA
A machine with an out-feed roller conveyor similar to the pipe threading machine mentioned.

The photo above is not the exact machine but you can see where if this was used to process piping the different diameter pipes would all sit at the same level.  One option could be to use a Super Air Wipe  for this application but then the smaller diameters would not pass through the center of the Air Wipe, instead they would pass through the bottom half of the airflow which may not give optimal performance. Instead, I suggested to use 4 of our 6″ Super Air Knife kits and 2 of our Electronic Flow Control units.

 

2 - 110006 - 6" Aluminum Super Air Knives coupled together w/  a 110900 SAK Connector Kit
2 – 110006 – 6″ Aluminum Super Air Knives coupled together w/ a 110900 SAK Connector Kit

I  suggested that we make two pairs of knives for this blowoff setup by coupling two of the 6″ Super Air Knives together.  Once they are coupled together like is shown above, we could mount the two coupled air knives vertically along the trough and blowing at a 45° angle toward the center of the conveyor.  The plumbing of the two bottom knives will be to one EFC while the top two knives will be plumbed to the other.    The sensors will then be set up at two different heights, lower knives to sense the bottom of the pipe and the upper knife sensor will be set just above the bottom 6″ knife.

The reason for using 4 – 6″ Super Air Knives and 2 EFCs instead of 2 – 12″ Super Air Knives and 1 EFC is to save the most compressed air possible.   By enabling them to turn the top two 6″ Super Air Knives off automatically when they are running below a 6″ diameter pipe.  Then when a larger pipe is processed the top knives will also kick on with the lower knives and provide a uniform blowoff of the product.

So if you have multiple sizes of product being processed on the same line and don’t think any one solution will work, contact us and see if we can’t come up with our own recipe.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Machine image courtesy PEO ACWA Creative Commons

 

Pressure Profile: Where to Measure Your Air Pressure

Generic Layout drawing of compressed air piping system.

In order to fully understand how efficient your compressed air system may be, you will need to generate a system pressure profile at some point.   This is a list or diagram of what pressures you have in your compressed air system at specific locations, as well as the pressure required by all the demand devices on your compressed air system.

One of the reasons for the pressure profile is that you may have an application that is far away from the compressor but also highly dependent on a specific operating pressure.   You may also find an application that, due to pressure losses within the system, causes an artificially high pressure demand.

The list below gives the critical points for measuring your compressed air system profile.

  1. At the air compressor discharge. (If using multiple compressors, measure at each.)
  2. If dryers of any type are being used after the compressor measure downstream from the dryer.
  3. Downstream of each filter. (If a particulate filter and oil removal filter are being used it is best to measure downstream of each individual device.   This is to tell when you have more than a 5 psig pressure drop or a clogged filter.)
  4. After each intermediate storage device, such as receiver tanks.
  5. At the point just before the main line from your compressor room branches off to distribution.
  6. The furthest point of each header line you have installed.
  7. On both sides of every filter/regulator units that are at high pressure point of use applications.

To give you an idea of why it is so important to measure these locations, take a look at the blogs we have posted on pressure drop. (Link Here)  As you can tell by the list of blogs that comes up, pressure drop through piping can really cause a lot of wasted energy in your compressed air system.   If you can get a good base line measurement by utilizing a pressure profile then you can start the process to optimizing your compressed air system.

6 steps
The EXAIR Six Steps To Optimizing Your Compressed Air System.

 

If you would like to discuss this or any of the other 6 steps to compressed air optimization, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF