Atto Air Nozzle Saves Dental Crown Manufacturer

This blog may get a little uncomfortable for some of us. It revolves around a subject that can strike fear into the hearts of many and just the thought of it can make sounds or smells come back from memory. For me, the sound of the high-pitched drill is precisely what comes to mind when I think of the Dentist….

That’s right, today we are talking about the Dentist. Well, more so a vendor for dentists that still deals with teeth. This manufacturer came to me looking for a way to improve their compressed air consumption on a tooling blowoff for the machining of dental crowns. They used custom-made blowoffs to try and remove the residual material on their cutting tools before contacting a new part and during the machining of a crown. The customer didn’t have a ton of room, and they did not want to redesign the entire blowoff. The blowoff was essentially an open pipe that had a .085″ diameter. Each machine station had three blowoffs, there are 20 machining stations per production line, with five total production lines. So any savings will add up quickly over 300 blowoff points.

BEFORE: A .085″ diameter open blowoff at each spindle to remove debris.

They were able to cut back and thread the end of the open blowoff for one of our 1108SS Atto Super Air Nozzles. The open blowoff was consuming 6 SCFM when operating at 80 psig inlet pressure for each blowoff point. For a single machining center that equates to 18 SCFM per center. 18 SCFM times 20 machining centers equals 360 SCFM of consumption per production line. Implementing the 1108SS reduced the consumption to 2.5 SCFM @ 80 psig per nozzle and gave a more defined blowoff pattern. 2.5 SCFM times 3 nozzles per center equates to 7.5 SCFM. 7.5 SCFM times 20 machining centers per production line totals 165 SCFM per production line. 360 SCFM minus 165 SCFM equates to 195 SCFM of compressed air savings by installing the further engineered solution.

AFTER: Three 1108SS Atto Super Air Nozzles provide adequate blowoff of debris.

Per nozzle, they can save up 72 cents per twelve-hour shift. While this does not seem like much, multiply that across 300 nozzles installed. You end up with $216.00 saved per twelve-hour shift. Some other breakdowns are shown below.

If you would like to discuss just how much a “little” open pipe blowoff is costing you, contact an Application Engineer today!

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

How Fast Can I Get My Return On Investment

Whenever an EXAIR product is sold to another business there is ultimately a question from a customer whether they know it or not. That question is very often, how fast will this product pay itself back in production gains, air savings, or decrease in downtime. One of the ways we offer this information is through our calculators.

The easiest method to determine how fast an EXAIR Engineered Solution will pay itself back is by knowing a few variables and then plugging them into our simplified Air Savings Calculator on the EXAIR site.

The Variables:
1. Current Customer Consumption (SCFM) or (SLPM) – We need this to have the baseline, it isn’t always easy to know off the top of your head so we offer items like the Digital Flowmeter or even the ability to send the product to us through the Efficiency Lab for a free diagnosis of consumption.

2. $ Cost of EXAIR Product – This is easy, you can even add in other known project costs to this that you want factored in for the return on investment. The more you add, the less it becomes a simplified ROI. Basic cost of the EXAIR product that is being installed is the best to keep it simplified.

3. EXAIR Product Consumption (SCFM) or (SLPM) – This can easily be obtained from our website or our Brain Trust, I mean Application Engineers who are always eager to talk about air consumption and other technical details. To really determine this we just need to know the operating air pressure and the model number.

4. $ Cost of compressed air/1,000 Cubic Feet – This is a value that may be known by the on-site utilities team, if not a good industry standard for the Midwest is $.25 USD. This has come assumptions on your kWh cost of energy and compressor efficiency. Again, if you want to dive deep into this, reach out to our Application Engineers, we are here for a reason.

That’s it, with those values input you can get a break down on how much air, and money you are saving and a simple payback in days of operation.

If you have questions on the math behind this, or how to determine/factor in some more information, contact one of the team members here and we will walk you through the best options to decrease your payback time and increase your efficiency.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF


Energy Rebates and EXAIR Products

In case it goes unnoticed, EXAIR focuses on engineered compressed air point of use products to ensure that our customers are utilizing their costly utility as efficiently as possible.  The main benefits to purchasing EXAIR products are the support you receive from us at EXAIR, the quality of the product, the savings in compressed air, and the increase in safety.  Another added benefit is a large number of utility companies are offering rebates on the purchase of engineered nozzles, just like the Super Air Nozzles that EXAIR offers.

Many energy providers offer these energy rebates for commercial or industrial users.  Here in the Cincinnati area, Duke Energy offers rebates on items such as lighting, air compressors, engineered air nozzles, heaters / dryers for extrusion machines, energy management systems, variable frequency drives, data center equipment, even food service equipment, custom incentives, and many other items.

Duke Energy Rebate
Example of our local energy rebate offering for Engineered Nozzles

For each engineered compressed air nozzle that is installed, in order to meet the rebate requirements they must flow less than or equal to given flow rates in SCFM at 80 psig inlet pressure. The pipe sizes, flow rates, and EXAIR equivalents are shown below.

EXAIR Engineered Air Nozzle Part Number EXAIR Flow Rate @ 80 psig
#1102/#1103 – 1/8 NPT 10 SCFM
#1100/#1101 – 1/4 NPT 14 SCFM
#1108SS-NPT/#1109SS-NPT/#1110SS-NPT
All are 1/8 NPT
2.5, 4.9, 8.3 SCFM
respectively
#1003 – 3/8 NPT 18 SCFM

By just replacing the nozzles the customer saved 2.7 SCFM per nozzle.If we take an example such as the EXAIR Case Study  shown below for 1/4″ copper tube that was being used as an open ended blow off.  The copper tubes were consuming 19.6 SCFM at 100 psig inlet pressure, there were 10 machines with one line per machine operating 40 hours, 52 weeks per year.   The customer retrofitted the open pipes with a model 1100 Super air nozzle and was able to reduce the air consumption by 2.7 SCFM per nozzle.  If they were to purchase these nozzles this year, current list price for a model 1100 Super Air Nozzle is $36.00 USD, then apply for the energy rebate offered by Duke Energy and receive $20.00 per nozzle replaced.  The total savings and return on investment is shown below.

Case Study 1561
EXAIR Model 1100 Super Air Nozzle Replaces Open Copper Pipe Blow Off

10 nozzles x 2.7 SCFM = 27 SCFM  x 60 minutes per hour x 8 hours per day x 5 days per week x 52 weeks per year = 3,369,600 SCF of compressed air saved per year.

3,369,600 / 1,000 SCF x $.25 = $842.40 USD savings in compressed air per year.

Cost Savings per week = $16.20 USD

Total purchase cost is  $36.00 x 10 nozzles = $360.00 USD

Energy Rebate = @20.00 per nozzle x 10 nozzles  = $200.00 USD in rebates.

$360.00 USD purchase price – $200.00 USD energy rebate = $160.00 USD final purchase cost.

Return on investment at a savings of  $16.20 USD per week is

$160.00 / $16.20 = Less than 10 weeks pay back!

By applying for the energy rebate this customer could reduce the ROI of this air savings project from just over 22 weeks (which is still very good) to less than 10 weeks.

If you would like to learn more about whether there are Industrial energy rebates available in your area, contact an Application Engineer and let us know where you are located and who your energy provider is.

We will help you determine the correct engineered solution to save your compressed air as well as help you to apply for eligible energy rebates in your area.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF