Opportunities to Save On Compressed Air

Since air compressors use a lot of electricity to make compressed air, it is important to use the compressed air as efficiently as possible.  EXAIR has six simple steps to optimize your compressed air system.  (Click HERE to read).  Following these steps will help you to cut your overhead costs and improve your bottom line.  In this blog, I will cover a few tips that can really help you to save compressed air.

To start, what is an air compressor and why does it cost so much in electricity?  There are two types of air compressors, positive displacement and dynamic.  The core components for these air compressors is an electric motor that spins a shaft.  Like with many mechanical devices, there are different efficiencies.  Typically, an air compressor can put out anywhere from 3 SCFM per horsepower to 5 SCFM per horsepower.  (EXAIR settles on 4 SCFM/hp as an average for cost calculations.)  Equation 1 shows you how to calculate the cost to run your air compressor.

Equation 1:

Cost = hp * 0.746 * hours * rate / (motor efficiency)

where:

Cost – US$

hp – horsepower of motor

0.746 – conversion KW/hp

hours – running time

rate – cost for electricity, US$/KWh

motor efficiency – average for an electric motor is 95%.

As an example, a manufacturing plant operates a 100 HP air compressor in their facility.  The cycle time for the air compressor is roughly 60%.  To calculate the hours of running time per year, I used 250 days/year at 16 hours/day.  So operating hours equal 250 * 16 * 0.60 = 2,400 hours per year.  The electrical rate for this facility is $0.08/KWh. With these factors, the annual cost to run the air compressor can be calculated by Equation 1:

Cost = 100hp * 0.746 KW/hp * 2,400hr * $0.08/KWh / 0.95 = $15,077 per year in just electrical costs.

There are two major things that will rob compressed air from your system and cost you much money.  The first is leaks in the distribution system, and the second is inefficient blow-off devices.   To address leaks, EXAIR offers an Ultrasonic Leak Detector.  The Ultrasonic Leak Detector can find hidden leaks to fix. That quiet little hissing sound from the pipe lines is costing your company.

A University did a study to find the percentage of air leaks in a typical manufacturing plant.  For a poorly maintained system, they found on average that 30% of the compressor capacity is lost through air leaks.  Majority of companies do not have a leak preventative program; so, majority of the companies fall under the “poorly maintained system”.  To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year.  That is just for one inaudible leak in hundreds of feet of compressed air lines.  Or if we take the University study, the manufacturing plant above is wasting $15,077 * 30% = $4,523 per year.

The other area to check is air consumption.  A simple place to check is your blow-off stations.  Here we can decide how wasteful they can be.  With values of 4 SCFM/hp and an electrical rate of $0.08/KWh (refence figures above), the cost to make compressed air is $0.25 per 1000 ft3 of air.

One of the worst culprits for inefficient air usage is open pipe blow-offs.  This would also include cheap air guns, drilled holes in pipes, and tubes.  These devices are very inefficient for compressed air usage and can cost you a lot of money.  As a comparison, a 1/8” NPT pipe versus an EXAIR Mini Super Air Nozzle.  (Reference below).  As you can see, by just adding the EXAIR nozzle to the end of one pipe, the company was able to save $1,872 per year.  That is some real savings.

 By following the Six Steps to optimize your compressed air system, you can cut your energy consumption, improve pneumatic efficiencies, and save yourself money.  With the added information above, you can focus on the big contributors of waste.  If you would like to find more opportunities to save compressed air, you can contact an Application Engineer at EXAIR.  We will be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Reduce Sound Levels In Less Than A Minute

Okay, I will admit, the title may be a tad bit leading.  The fact is, it can be done.  I speak to customers almost daily who are struggling with the noise levels produced from open pipe blowoffs.  With Noise Induced Hearing Loss (NIHL) a significant problem among manufacturing workers, reducing the noise form compressed air can be a simple solution and contribute toward reducing overall noise exposure levels. Many of these calls and emails revolve around reducing these exact noise levels, sometimes the open pipes have existing threads on them to install the solution immediately.

To reduce these noise levels, we need to simply reduce the amount of energy that is being expelled through the pipe. How do we do this you might ask?  The use of an air nozzle will reduce the energy being dispersed from an open pipe.  This will result in lower air consumption as well as lower sound levels while actually increasing velocity as the pipe will maintain higher operating pressures. Be cautious about the air nozzle you choose, however, they are not all created equal. EXAIR’s engineered air nozzles are among the quietest and most efficient air nozzles available.

Family of Nozzles

What size pipes can we fit nozzles to?  That’s a great question.  We have nozzles that range from a 4mm straight thread all the way up to 1-1/4″ NPT thread.  This also includes nearly any size in between especially the standard compressed air piping sizes.  For instance, a 1/4″ Sched. 40 pipe that has 1/4″ MNPT threads on it can easily produce over a 100 dBA noise level from 3 feet away.  This can easily be reduced to below 80 dBA from 3′ away by utilizing one of our model 1100 Super Air Nozzles.  All it takes is a deep well socket and ratchet with some thread sealant.

This doesn’t just lower the sound level though, it reduces the amount of compressed air expelled through that open pipe by creating a restriction on the exit point.  This permits the compressed air to reach a higher line pressure causing a higher exit velocity and due to the engineering within the nozzle, this will also eliminate dangerous dead-end pressure and complies with OSHA standard 29 CFR 1910.242(b).

Easy Install

All in all, a 30-second install can make an operator’s work station considerably quieter and potentially remove the need for hearing protection.  If you would like to discuss how to lower noise levels in your facility, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Dollar Savings: Open Pipes vs EXAIR Air Nozzle

Early one morning we received a call from a local metal stamping company that had a problem. They had outstripped the volumetric capacity of their (2) 50 HP air compressors.

They were using open copper tubes to facilitate separating the part from the die on the upstroke and then blow the part backwards into the collection chute. The (5) 1/4” copper tubes were all connected to a single manifold with a valve to control each tube.  Compounding their compressed air shortage was that this setup was duplicated on approximately (8) presses.  Per the plant they run the presses for approximately (4) hours per day.  The volume of air required for one press was calculated as:

One 1/4” open copper pipe consumes 33 SCFM @ 80 PSIG, therefore:

EDV Blog.JPG

Due to the award winning design of EXAIR’s engineered air nozzles the plant achieved faster separation of the part from the die and greater efficiency moving the part to the collection chute, while averting the need to purchase a larger air compressor. They are saving air, reducing energy costs and lowering the noise level in their facility.

If you would like to discuss saving air and/or reducing noise, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

 

Increasing Efficiency With EXAIR Super Air Nozzles

Earlier this morning I received a phone call from a gentleman in search of a more efficient compressed air solution.  The application was to remove thermoformed plastics from a mold immediately after the mold separates.  In the current state, the application is consuming ~40% of the available compressed air in the facility through the use of (9) ¼” open pipes, consuming a confirmed 288 SCFM at 60 PSIG.  Due to the use of an open pipe, this customer was facing a safety and noise concern through the existing solution.

After discussing the application need and the desire to reduce compressed air use, reduce noise, and add safety, we found a suitable solution in the 1101 Super Air NozzleInstalling (9) of these EXAIR nozzles will reduce the compressed air consumption by over 65%!!!  Calculations for this savings are below.

Existing compressed air consumption:  288 SCFM @ 60 PSIG

Compressed air consumption of model 1101 @ 60 PSIG:  11 SCFM

Total compressed air consumption of  (9) 1101 nozzles:

Air savings:

This is the percentage of air which the new EXAIR solution will consume.  To put it another way, for every 100 SCFM the current solution consumes, the EXAIR solution will only require 34.38 SCFM. Installing these EXAIR nozzles will result in lower operational cost, lower noise levels, and increased safety for this customer – all while maintaining or improving the performance of the blow off solution in this application.

EXAIR Application Engineers are well versed in maximizing efficiency of compressed air systems and blow off needs.  If you have an application with a similar need, contact an EXAIR Application Engineer.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE