Keep Your Pneumatics “Healthy” and “Running Like a Brand New Car”

Compressed air systems are used in facilities to operate pneumatic systems, and these systems are vital for industries.  So, it is important to keep them running.  The system can be segregated into three different sections; the supply side, the demand side, and the distribution system.  I like to represent these sections as parts of a car.  The supply side will be the engine; the distribution system will be the transmission; and, the demand side will be the tires.  I will go through each section to help give tips on how to improve the “health” of your pneumatic system.

From the supply side, it will include the air compressor, after-cooler, dryer, and receiver tank that produce and treat the compressed air.  They are generally found in a compressor room somewhere in the corner of the plant.  The air compressor, like the engine of your car, produces the pneumatic power for your plant, and needs to have maintenance to keep it working optimally.  The oil needs to be changed, the filters have to be replaced, and maintenance checks have to be performed.  I wrote a blog that covers most of these items, “Compressed Air System Maintenance”.

To connect the supply side to the demand side, a distribution system is required.  Distribution systems are pipes which carry compressed air from the air compressor to the pneumatic devices.  Just like the transmission on the car, the power is transferred from the air compressor to your pneumatic products.

Maintenance is generally overlooked in this area.  Transmissions have oil which can be detected if it is leaking, but since air is a gas, it is hard to tell if you have leaks.  Energy is lost from your pneumatic “engine” for every leak that you have.  So, it is important to find and fix them.  A study was conducted within manufacturing plants about compressed air leaks.  They found that for plants without a leak detection program, up to 30% of their compressed air is lost due to leaks.  This will be equivalent to running on only 6 cylinders in a V-8 engine.

EXAIR offers the Ultrasonic Leak Detector to find those pesky leaks.  It makes the inaudible “hiss”; audible.  It can detect leaks as far as 20 feet (6m) away with the parabola attachment, and can find the exact location of the leak to be fixed with the tube attachment.

Another area for discussion with the distribution system is contamination like rust, oil, water, and debris.  Compressed air filters should be used to clean the compressed air that supplies your pneumatic products. They can remove the debris for your pneumatic products to have a long life.  You can read about the EXAIR compressed air filters here, “Preventative Maintenance for EXAIR Filters”.

The third section is the demand side.  So, you have an engine that makes the power, the transmission to transfer that power, and the tires to use that power safely and efficiently.  Many managers miss the importance of the demand side within their pneumatic system.  If you are using blow-off devices like open pipes, coolant lines, copper tubes, or drilled pipe; it will be like running your car on flat tires.  It is very unsafe as well as reducing gas mileage.  To improve safety and efficiency, EXAIR has a line of Super Air Nozzles and Super Air Knives.  Not only will it increase your “gas mileage” to save you money, but they also will keep your operators safe.

In this analogy, you can have a high-performance engine and a durable transmission, but if your tires are bald, flat, or cracked; you cannot use your car safely and efficiently.  The same thing with your compressed air system.  You have to optimize your blow-off devices to get the most from your pneumatic system.  EXAIR is a leader in engineered blow-off devices for efficiency and safety.  So, if you want to improve the “health” of your pneumatic system, you should begin at how you are using your compressed air on the demand side.  EXAIR has Application Engineers that will be happy to help you in trying to keep your pneumatic system running like a “brand new car”.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo: Ford Mustang Roadster by openclipart-VectorsPixabay License

Better Understand Your Blowoff Process with EXAIR’s FREE Efficiency Lab

panoramic view
The EXAIR Efficiency Lab

Many customers may not have the means to test the air consumption of their blowoff solutions. With compressed air being the most expensive utility in a manufacturing facility, it’s important to identify places where you can save money on your overall operating costs. EXAIR manufacturers a wide variety of products intended to help you reduce your compressed air usage. If you’re not able to accurately measure the consumption in your own shop, we invite you to send the products into EXAIR for testing. With EXAIR’s Award Winning Efficiency Lab, just simply contact an Application Engineer, box them up and send them to our warehouse in Cincinnati, Ohio.

EXAIR Efficiency Lab

Once we receive it, our engineers will complete some in-depth testing to determine the compressed air consumption, sound level, and force that your current solution provides. With this information, we’ll be able to compare it to an EXAIR Engineered Solution. This way we ensure that you receive the best, safest solution possible also capable of saving money through reduced air consumption and improved efficiency.  We’ll send you back a comprehensive report that’ll help you to make the best decision for your company.

I’ve been recently working with a customer that sent in one of the nozzles they’re using across all their CNC machines. They wanted us to test it out and see if we’re able to offer them something that could reduce their overall compressed air usage. The nozzle was one of the cheap plastic varieties and was attached to a commonly used modular hose. This type of modular hose is not designed for operating under high pressures. These hoses are more suitable for liquid coolant or air that is at or below atmospheric pressure.

IMG_7486
Inefficient and unsafe plastic nozzle

After testing, we found that at 80 psig the nozzle consumed 3.85 SCFM and produced a force of 1.92 oz. We also noticed that after 60 psig, the nozzle began to leak due to a poor seal where the nozzle met the brass hex. The EXAIR nozzle most suitable to replace this was the 1108SS. At just 2.5 SCFM at 80 psig, replacing the plastic nozzle with an engineered solution saves them 35% of their overall consumption for this blowoff. With close to 1000 of these nozzles in operation, that adds up quickly!!

In addition to increasing efficiency, replacing these nozzles also greatly increases overall worker safety. The sound level is reduced from 73 dBA to just 58 dBA and EXAIR’s nozzles also adhere to OSHA 1910.242(b). The plastic nozzles could be dead-ended, posing a hazard that can result in costly fines. These fines are assessed per infraction, so having multiple non-compliant nozzles can easily get very expensive if you’re subject to an unannounced visit by an OSHA inspector.

If you think you may have an opportunity to improve upon your existing blowoff methods, give us a call. We’ll be happy to take a closer look and have you send the product back to EXAIR for a quick trial in our Efficiency Lab. You’ll be glad you did!

Tyler Daniel
Application Engineer
E-mal: TylerDaniel@exair.com
Twitter: @EXAIR_TD