EXAIR’s Super Air Knife Replaces Blower-Driven Slotted Pipe

EXAIR’s Super Air Knives are the ideal fit for any application requiring a laminar “curtain” of air for blowoff purposes. The high-velocity airflow does an excellent job of cleaning off surfaces, cooling, and drying in a wide variety of applications throughout industry. These products are engineered to provide a consistent and reliable force across the full length of the knife, ensuring repeatable performance in any application.

I recently worked with a customer who manufactures a variety of bread products. In one application, they were using slotted pipes connected to a blower to clean sesame seeds off of trays after baking. The cut pipes seemed like a simple and economical solution since they had the materials there in the facility already, but the homemade blower-knives were lacking in force necessary to clean the trays.

Slotted pipes operating off of a blower didn’t quite pack the “punch” necessary to clean the trays.

When the tray wasn’t fully cleaned, residual seeds would stick to the bottom of the next loaves and burn leaving an unacceptable product for their customers. The solution was to implement a manual step of scraping off the trays which required a dedicated operator to perform this single operation. The plant runs 24/7, leading the customer to hire 3 new personnel strictly for cleaning the trays all day long.

Recent staffing difficulties due to COVID-19 led management to seek out areas where they could enhance their production efficiency and identified an opportunity in this application. EXAIR’s compressed air operated Super Air Knives provide a hard-hitting curtain of air that is very effective at cleaning. The (2) slotted pipes were replaced with (2) Model 110024SS stainless steel Super Air Knives and plumbed into their existing compressed air system.

Immediately, the higher force provided by the Super Air Knives displayed the ability to completely clean the trays and eliminate the need for dedicated operators for this part of the process. This allowed them to shift personnel to areas in the facility in desperate need of help, while still solving the problem of rejected bread loaves due to residual seeds.

If you have an application in your facility that is in need of an efficiency makeover, give us a call. Our team of experienced Application Engineers is ready to help evaluate your process and make any necessary recommendations.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Engineered Compressed Air Products = Less Noise & Money Saved

Everyone dislikes loud noises for the most part. Here in Ohio we just got done surviving the constant buzz and swarming of cicadas. We all deal with noise on a daily basis, some of it enjoyable and some of it not so much. Noise is an inescapable fact of life and all we can do is try to reduce noise level to save our sanity. But, did you know that cutting down on the noise produced by compressed air blow offs can actually save you money? Your loud homemade blow off system is not only way too loud, but it is most likely also costing you more money than you need to spend.

EXAIR’s engineered compressed air products are designed to operate quietly and efficiently. The reduction in noise they produce is only one of the benefits – another is the reduction in money by reducing compressed air use.

EXAIR Super Air Knife Promotion
EXAIR’s SUPER AIR KNIFE

But how does one calculate out the ROI? It is very simple to calculate out your potential savings of using one of EXAIR’s Intelligent Engineered Compressed Air Products. If you would rather not do the calculations out yourself then we can do it for you by sending the item in question to our Efficiency Lab Testing. The Efficiency Lab Testing is a free service that we offer to show you the possible savings by switching to one of our products.

The following is a typical ROI preformed and replaced with a corresponding EXAIR Super Air Nozzle:

  • ¼” drilled pipe with (3) 3/32” Holes which uses 9.4 SCFM per hole at 80 psig (denoted as DP)
  • A Model 110003 3” Super Air Knife can be used to replace and only uses 8.7 SCFM at 80 psig (denoted below as SAK)

Calculation:

(DP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for Copper Pipe 

(28.2) * (60) * (8) * (5) * (52) = 3,519,360 SCF

(SAK air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for EXAIR Product 

 (8.7) * (60) * (8) * (5) * (52) = 1,085,760 SCF

Air Savings:

SCF used per year for DP – SCF used per year for SAK = SCF Savings

               3,519,360 SCF – 1,085,760 SCF = 2,433,600 SCF in savings

If you know the facilities cost to generate 1,000 SCF of compressed air you can calculate out how much this will cost you would save. If not, you can us $0.25 to generate 1,000 SCF which is the value used by the U.S. Department of Energy to estimate costs.

Yearly Savings:

                (SCF Saved) * (Cost / 1000 SCF) = Yearly Savings

                                (2,433,600 SCF) * ($0.25 */ 1000 SCF) = $608.40 annual Savings

With the simple investment of $216 (as of date published) you can calculate out the time it will take to pay off the unit.

Time Until payoff:

                (Yearly Savings) / (5 days/week * 52 weeks/year) = Daily Savings

                                ($608.40/year) / (5 days/week * 52 weeks/year) = $2.34 per day

                (Cost of EXAIR Unit) / (Daily Savings) = Days until unit has been paid off

                                ($216) / ($2.34/day) = 92.3 days 

As you can see it doesn’t take long for the air knife to pay for itself. You also get better overall performance as the Super Air Knife will provide a solid curtain of air. In the end you get to breathe a sigh of relief as no more jump scares and a loud hiss when you turn your air on. Who doesn’t like to save a little money and sanity, especially in these crazy times?

If you have any questions or want more information on EXAIR’s Air Knifes or like products. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Save Compressed Air with the EXAIR Electronic Flow Control

The best way to save compressed air is to simply turn it off when it’s not being used. This might seem pretty simple, but there may be processes in your facility where this couldn’t be achieved by just turning a valve. In applications where product is traveling along a conveyor, and must be dried, cooled, or blown off, there is likely some spacing in between the parts. It isn’t necessary to keep the blowoff running constantly if there’s periods of intermittent spacing. To help reduce the overall load on the air compressor, implementing a solution to shut the air off in between each part can have a dramatic impact. EXAIR’s Electronic Flow Control, or EFC, is designed to improve efficiency by reducing overall compressed air usage. It utilizes a photoelectric sensor that detects when the part is present. When it’s not, it triggers a solenoid valve to close and shut off the compressed air supply.

efcapp
EXAIR EFC

One way to use the Electronic Flow Control would be for Turning a Atomizing Spray nozzle on to coat your product.  For example see the photo below where you could use the EFC to sense the pants coming down the line. Then turn the air supply on to spray a bleach solution to get the weathered look you are after. Once the pants pass the EFC will turn the nozzle off, replacing a manual operation awhile saving compressed air and your liquid solution!

Another use would be to tell when a hopper that is being filled by a Line Vac is empty or over filled.  You can adjust the sensor and the control module to sense that the hopper is empty and it will turn the compressed air on to the Line Vac to then feed the hopper.  Then set the timer module so it will run for the length of time it takes to fill the hopper.  The other way would be to place the sensor at the top of the hopper and have it sense when the pile of media has reached the full level.

The EFC models available from stock can accommodate flows up to 350 SCFM. For applications requiring more compressed air, EFCs with dual solenoids are also available. If you have an application in one or more of your processes where intermittent compressed air use could help save you money, give us a call. We’d be happy to take a look at the application and help determine just how quickly the EFC could start paying YOU

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

The Difference Between a Hose and a Tube and Their Effect on Pressure Drop

EXAIR has been manufacturing Intelligent Compressed Air Products since 1983. They are engineered with the highest of quality, efficiency, safety, and effectiveness in mind. Since compressed air is the source for operation, the performance limitations can be defined by its supply. With EXAIR products and pneumatic equipment, you will need a way to transfer the compressed air from the source to the point-of-use. There are three main ways; pipes, hoses and tubes. In this blog, I will compare the difference between compressed air hoses and compressed air tubes.

The basic difference between a compressed air hose and a compressed air tube is the way the diameter is defined.   A hose is measured by the inner diameter while a tube is measured by the outer diameter. As an example, a 3/8” compressed air hose has an inner diameter of 3/8”. While a 3/8” compressed air tube has an outer diameter that measures 3/8”. Thus, the inner diameter of the tube will be smaller than the hose.

Why do I bring this up? Pressure drop… Pressure Drop is a waste of energy, and it reduces the ability of your compressed air system to do work. To cut waste, we need to reduce pressure drop.  If we look at the equation for pressure drop, we can find the factors that play an important role. Equation 1 shows an equation for pressure drop.

Equation 1:

From Equation 1, differential pressure is controlled by the flow of compressed air, the length of the pipe, the diameter of the pipe, and the inlet pressure. As you can see, the pressure drop is inversely affected by the inner diameter to the fifth power. So, if the inner diameter of the pipe is twice as small, the pressure drop will increase by 25, or 32 times.

As an example, we have a 1/2″ black schedule 40 pipe which has an I.D. of 0.622″.  We use this pipe to flow 40 SCFM of compressed air at 100 PSIG through 100 feet.  What would be the pressure drop?  With Equation 1, imperial units, we get a pressure drop of 1.28 * (40 SCFM/60) ^1.85 * 100 feet / ((0.622″)^5 * 100 PSIG) = 6.5 PSID.  Thus, you started with 100 PSIG, and at the end of the pipe, you will only have (100 PSI – 6.5 PSI) = 93.5 PSIG to use.  Sizing pipe is very important when supplying compressed air to your system as pressure drop is a waste of energy.

Let’s revisit the 3/8” hose and 3/8” tube. The 3/8” hose has an inner diameter of 0.375”, and the 3/8” tube has an inner diameter of 0.25”. In keeping the same variables except for the diameter, we can make a pressure drop comparison in Equation 2.

Equation 2:

As you can see, by using a 3/8” tube in the process instead of the 3/8” hose, the pressure drop will be 7.6 times higher.  As an example, if the pressure drop through a 3/8″ hose is 1 PSID, and you decide to switch out to a 3/8″ tube.  The pressure drop will then be 7.6 PSID, and a big loss of pressure.

Diameters: 3/8″ Pipe vs. 3/8″ tube

At EXAIR, we want to make sure that our customers are able to get the most from our products. To do this, we need to properly size the compressed air lines. Within our installation sheets for our Super Air Knives, we recommend the infeed pipe sizes for each air knife at different lengths. (You will have to sign into the website to download).  We also have an excerpt about replacing schedule 40 pipe with a compressed air hose. We state; “If compressed air hose is used, always go one size larger than the recommended pipe size due to the smaller I.D. of hose”. Here is the reason. The 1/4” NPT Schedule 40 pipe has an inner diameter of 0.364” (9.2mm). Since the 3/8” compressed air hose has an inner diameter of 0.375” (9.5mm), the diameter will not create any additional pressure drop. Some industrial facilities like to use compressed air tubing instead of hoses. This is fine as long as the inner diameters match appropriately with the recommended pipe in the installation sheets. Then you can reduce waste from pressure drop and get the most from your EXAIR products.

With the diameter being such a significant role in creating pressure drop, it is very important to understand the type of connections to your pneumatic devices; i.e. hoses, pipes, or tubes. In most cases, this could be the reason for under performance of your pneumatic products, as well as wasting money within your compressed air system. If you would like to discuss further the ways to save energy and reduce pressure drops, an Application Engineer at EXAIR will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo: Manometers by WebLab24_Siti_Web . Pixabay License