EXAIR Products Entrain FREE Ambient Air For Maximum Force and Flow

Air entrainment is a term that we bring up quite often here at EXAIR. It’s this concept that allows many of our products to dramatically reduce compressed air consumption. The energy costs associated with producing compressed air make it an expensive utility for manufacturers. Utilizing engineered compressed air products that will entrain ambient air from the environment allow you to reduce the compressed air consumption without sacrificing force or flow.

Products such as the Super Air Knife, Super Air Nozzle, Air Amplifier, and Super Air Wipe all take advantage of “free” air that is entrained into the primary supplied airstream. This air entrainment occurs due to what is known as the Coanda effect. Named after renowned Romanian physicist, Henri Coanda, the Coanda effect is used in the design of airplane wings to produce lift. As air comes across the convex surface on the top, it slows down creating a higher pressure on the underside of the wing. This creates lift and is what allows an airplane to fly.

EXAIR Super Air Nozzle entrainment

This is also the same principle which is allowing us to entrain ambient air. As the compressed air is ejected through a small orifice, a low-pressure area is created that draws in additional air. Our products are engineered to maximize this entrained air, creating greater force and flow without additional compressed air. Super Air Amplifiers and Super Air Nozzles are capable of up to a 25:1 air entrainment ratio, with just 1 part being the supplied air and up to 25 times entrained air for free!! The greatest air entrainment is achieved with the Super Air Knife at an incredible ratio of 40:1!

This air entrainment principle allows you to utilize any of these products efficiently for a wide variety of cooling, drying, cleaning, or general blowoff applications. In addition to reducing your compressed air consumption, replacing inefficient devices with engineered products will also dramatically lower your sound level in the plant. Sound level in some applications can even be reduced down to a point that would eliminate the need for hearing protection with the OSHA maximum allowable exposure limits set at 90 dBA for an 8-hour shift.

If you have inefficient blowoff devices in your facility, give us a call. An Application Engineer will be happy to help you select a product that will “quietly” reduce your compressed air consumption!

Tyler Daniel, CCASS


Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Porous and Non-Porous E-vac Generators

Having an injection molding background I saw many uses for parts pickers using many different sizes from 90 – to 3000 ton injection molding machines and a vast amount of part sizes and shapes that varied from items as small as dinner plates to as big as municipal refuse containers. I dealt mainly with non-porous applications but EXAIR offers both porous and non-porous E-vacs to accommodate wide range of part sizes and weights.

EXAIR has High Vacuum Generators for Non-Porous Applications with high vacuum units up to 27″ Hg (91 kPa) with vacuum flows up to 15.8 SCFM (447 SLPM). The plastic products I was moving were all non-porous, meaning air or liquids would not permeate into the surface of my product. Other examples of non-porous material including plastic sub-straights include glass, steel sheet, ceramics, vinyl, sealed tiles and varnished wood.

Porous applications use a low vacuum generator. Low vacuum units up to 21″Hg (71kPa) with flows up to 18.5 SCFM (524 SLPM) are typically used for porous materials such as corrugate, wood, fabrics, cinder block, etc… The relatively lower level vacuum for porous materials prevents warping, marring, dimpling or disfiguring of the surface due to excessive vacuum. This style generates more vacuum flow to overcome porosity and leakage while maintaining control over the object being handled.

Referencing the previously mentioned refuse container application, I performed the weight and movement analysis and determined that four of our model 900754 vacuum cups and two of our model 810006M Non-porous E-vacs would have been more than adequate to unload and lift my 95 gallon refuse container lids from the injection molding machine and move them to the hot stamp center. I recall the vacuum cup system we had in place back then, would frequently drop out and lose control over the product. This was not only a real process headache, but also made for a legitimate safety issue as well.

EXAIR E-vacs actually have other interesting uses. They have been used in applications for bag and package opening, label placement, vacuum forming, leak testing and many other applications.

EXAIR also has accessories to round out vacuum cup systems including vacuum cups themselves, mufflers, check valves, vacuum tubing and fittings. We would have interest to discuss your application. If you have questions regarding which E-vac style and size is proper for your project please contact any of our Application Engineers to help you with selection and design of your system.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

EXAIR’s Safety Air Guns are the Ergonomic Answer

In addition to a variety of engineered Air Nozzles, you can customize your EXAIR Safety Air Gun with Chip Shields, Extensions, Stay Set Hoses, etc., to meet the particular needs of a specific application.

EXAIR has a nice selection of Safety Air Guns. The VariBlast Precision and Compact, Soft Grip, Heavy Duty and Super Blast Safety Air Guns are available with a variety of air nozzles, chip shields and pipe extensions. They are durable and comfortable and ergonomic to use.

These Safety Air Guns are designed with durability and comfort in mind while also ergonomically safe to use. Safe operation is assured along with low air consumption and noise levels.

EXAIR Engineered air nozzles are available in Type 316 stainless steel for superior corrosion resistance and mechanical wear, Type 303 stainless steel for corrosion resistance, PEEK thermoplastic for non-marring and chemical resistance or zinc/aluminum alloy for general purpose applications.

Flying Debris? – Chip Shields are durable polycarbonate shields that protect the operator from risk of flying debris often seen when blowing off chips from machined parts. They are also useful to prevent coolant from splashing back, creating a mess during drying processes.

The Chip Shields are available for EXAIR’s VariBlast, Soft Grip and Heavy Duty Safety Air Guns. The Chip Shield can be used on Safety Air Guns with or without an aluminum extension. They may be purchased as part of a new air gun system, or retrofitted as a Chip Shield Kit.  Consult an Application Engineer for selection assistance.

If you have a blow-off process where the air is to be directed at a distance away from the operator, or into a hard to reach location an extension is the solution. Available in lengths from 6″ (152mm) to 72″ (1829mm), with sizes as to meet most requirement can be found. To add an extension to an air gun, simply add -xx to the current part number..

EXAIR’s Stay Set Hoses are available from 6”-36” in lengths with ¼ NPT male threads on each end, or a ¼ NPT male on one end and 1/8 NPT female on the other. The Stay Set Hoses are rigid and allow you to maintain precise positioning of the blow off nozzle. The hoses have “memory” and will not creep or bend.

 If you need a 12′ coiled air hose, to use with your Safety Air Gun, we have them available and in stock. Available with 1/8 NPT, 1/4 NPT or 3/8 NPT male end swivel connections. Avoid tangled and messy air lines and keep things neat!

If you have ab application and need help deciding which EXAIR Safety Air Gun and/Nozzle you need. Please contact us and ask for any Application Engineer. We are always happy and eager to help.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

EXAIR Case Studies Share Succe$$

EXAIR provides many informative tools to help you decide which of our products will work best for you. We have a qualified staff of Application Engineers, a comprehensive catalog, Installation Sheets, Blogs, and a library of Case Studies, to name a few. Following is more about our Case Studies and how they can be helpful.

EXAIR keeps a library of Case Studies for your reference. The Library s is also organized by product so you can easily find the information and product you have interest. These case studies summarize how our customers have purchased, used, and benefited from our products and their purchase. These studies focus on our products and your project, we do not use our customer names and only use photos and verbiage that you approve and share with us.

The process to develop a Case Study is as easy as talking to one of our Application Engineers. We will discuss your project and work with you to decide the wording and photos that you approve for the study. Once the study has been completed and approved we can discuss a credit on your purchase or percentage discount on your next purchase. This becomes a “win, win” for both you and EXAIR.

EXAIR appreciates a good success story, and we want to encourage you to share your success from using one or more of our products. This is why EXAIR incentivizes Case Studies. We will offer a discount to any company who will provide enough information to produce a case study. If you have interest to create a Case Study (and save money) on your next project please contact one of our Application Engineers so we can discuss your application and goals.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK