A Burst of Air From Our Super Air Nozzles Keeps Vacuum System Pipes Clean

Bales of cotton and polyester fibers

Bales of cotton and polyester fibers

An overseas textile company had many automated spinning machines to manufacture yarn from raw cotton and polyester fibers. They used a vacuum collection system to remove any floating fibers from within their spinning machines for safety reasons.  In this facility, they had three rows of ten spinning machines.  Above each row, a collection duct, ranging for 8” to 30” in diameter, would collect the fibers and transport them to a baghouse.  The difference in diameters was to keep the vacuum pressure the same in each spinning machine.  The machine that was the farthest from the baghouse had the smallest diameter pipe, and the machine that was closest to the vacuum system had the largest.  They needed to keep an optimum vacuum pressure inside each machine because too much would affect the production of the yarn and too little would allow the fibers to migrate into the production area.  The concern with fibers migrating in the production area was a fire hazard, a big safety issue.  In order to have each row of machines performing effectively, they needed to keep the static pressure as low as possible.

Blending Machine (Note: the spinning machines are behind this)

Blending Machine (Note: the spinning machines are behind this)

The issue that they had was the discarded fibers would gather and collect in the ductwork. Each machine had a 4” duct that would draw the fiber from the spinning machine into the bottom of the collection duct overhead.  The velocity profile inside the main line was being disrupted by each feed duct, as it allowed a “dead” spot for the fibers to gather.  As fibers would entangle with each other and become larger, the static pressure would increase.  This would cause the vacuum pressures to change inside the spinning machines, affecting production.  They would have to shut the row down, open the ductwork, and clean the entire piping system.  This was time consuming and costly as it stopped production.

The customer tried a homemade nozzle made of a copper tube. He flattened one end and placed it in the bottom of the ductwork just upstream of the problem area.  He triggered it intermittently, and after a while he noticed that he still had the fibers collecting in the pipes, but in different areas.  In knowing how the velocity profile is very sensitive in dust collection systems, any additional obstructions could cause the problem to change to another location within the system.  He contacted EXAIR to see if we could help him.

I put on my engineering hat to help solve this issue. I suggested our model 1104 Super Air Nozzles because it had enough force to reach the other side within the range of diameters.  The EXAIR Super Air Nozzles are very powerful and efficient nozzles.  It is designed to entrain the ambient air.  This gives it a powerful force without using a lot of compressed air.  My suggestion was to place them along the top of the collection pipe as we needed to keep the profile smooth along the bottom section of the pipe.  As a recommendation, I suggested for them to use an angled extraction port (not made by EXAIR).

Extraction Port (Not sold by EXAIR)

Extraction Port (Not sold by EXAIR)

It screws to the outside of the ductwork, and it has a 2” opening with a 45 degree angle (reference photo above).  They could aim the Super Air Nozzles at the “dead” spots to lift the fibers off the bottom; allowing the system to pull them toward the baghouse.  Without having to redo their entire collection system, they were able to cut an opening in the top of the duct and mount the Super Air Nozzles.  As an added benefit, the nozzles were not in the air stream; so, there was no additional static pressure in the system.  The customer was able to design a solenoid triggering system to have only one Super Air Nozzle to operate at one time.  It would start from the farthest point, and trigger one at a time toward the bag house.  With a short burst of air, it would keep the fibers in the air stream without affecting the operations of the spinning machines.  This customer was very happy as they were able to keep their operation running without a buildup of static pressure in the vacuum system and without allowing fibers to escape into the work area.

EXAIR Nozzles

EXAIR Nozzles

If you have contamination that gets stuck in your system, and you need a powerful burst of air to break it up, EXAIR may have the right nozzle for you. It can save you from much frustration, headaches, and waste of time in making your own blow off devices.

 John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

High Power Super Air Nozzles Provide Forceful Air Flow

When considering the application of a compressed air product, we have an awful lot of discussions with callers about the amount of force generated.  Now, if that’s all you want, you’re not going to get more force from compressed air flow from anything but an open ended blow off.  There are problems inherent with this: it’s unsafe, it’s loud, and it’s a horribly inefficient way to use compressed air.  By the time they’ve called EXAIR, they probably know this, but the main concern is still the same: solving their application.

Good news is, you don’t need a lot of FORCE for most blow off situations.  Think about it…how much do sawdust, machining chips, coolant droplets, etc., weigh, anyway?  All you really need to do is optimize the air flow, which is EXACTLY what EXAIR Intelligent Compressed Air Products are engineered & designed for.  So, we talk a LOT about how often a high amount of force isn’t needed in compressed air blowing applications.

Then…I got a call from a user who needed force.  They had an air knife installed to blow parts out of a mold, as the halves separated.  There’s a rectangular array of parts in a multi-cavity mold, and the air knife just wasn’t getting them all out, all the time.

The air knife, was, of course, originally chosen for its efficiency, but it just wasn’t delivering the needed “punch.” They even tried other shim thicknesses (which increases the outlet air gap) to increase the flow & force delivered, and that helped a little, but wasn’t 100% effective.

The solution came in the form of an array of HP1125-9212 2″ High Power Flat Super Air Nozzles, supplied with 12″ Stay Set Hoses.  They’re able to mount these closer to the mold than the air knife, and the ability for each nozzle to operate independently meant they were able to be aimed precisely where they can do the most good.  They are now able to evacuate the molds the first time, every time.

Sometimes, you DO need the high force of the HP1125 2″ High Power Flat Super Air Nozzle

If you have questions about how to get the most out of your compressed air use, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Part Ejection Improved by Choosing the Right Air Nozzle

Recently, I was able to work with a gentlemen from a stamping company that produces small metal stamped lids for the cosmetic industry.  He was frustrated because the current blow off setup, a copper tube and nozzle (shown below), was too weak and narrow to be effective with parts ranging from 1″ to 2.5″ wide.  Whenever a lid did not get completely discharged, the machine would jam and double hit on the next cycle, ruining (2) parts in the process, not to mention, potentially damaging the the tooling.

blowoff

Stamping Operation with Original Nozzle

After reviewing the process, which is very high speed, we wanted a strong, concentrated blast of air that matched the part profile to maximize the air flow contact patch.  We agreed the model HP1125 – 2″ High Power Flat Super Air Nozzle would be a good nozzle to implement and test.  In addition to the Nozzle, the customer ordered the model HP1132SS Shim Set, to allow for flow and force adjustment of the nozzle to obtain the best possible performance under production conditions.  The HP1125 nozzle provides 2.2 lbs of force with the standard .025 patented shim installed, and can be decreased or increased by changing the shim to .020″ or .030″ thick. Preliminary testing has proven successful, and reliability testing and data collection is underway.

2 Inch Flat

2″ Flat Super Air Nozzle

EXAIR has available, the Air Nozzles Blowoff Guide, a handy reference with 23 pages of technical data for OSHA safe nozzles and Safety Air Guns for every application imaginable.

blowoff guide

The EXAIR Air Nozzles Blowoff Guide

To discuss your part ejection, blowoff, cooling or drying application, feel free to contact EXAIR and one our  Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

The power of the 2” High Power Flat Super Air Nozzle in a blow-off application

A stamping company contacted me for help in their ejection blow-off system.  Their operation consisted of a punch press that would form two 8” X 8” triangles from a square piece of metal.  The operation of the punch press was to cut the square piece diagonally at the same time forming the outside edges of the triangle.  At the end of each stroke cycle, the formed parts would then be blown off the die with compressed air.  The blow-off system consisted of two pipes, one that was a ¾” NPT pipe and the other that was a ½” NPT pipe.  They both had the ends of a long nipple flattened to concentrate the air flow.  EXAIR has reduced air use, saved money, and lowered noise levels for many similar applications by replacing open blow-off devices with our engineered air nozzles.

In giving me more details about their operation, the system had a timing sequence that controlled an actuator. When the cycle was complete, the actuator, located below the tabletop of the punch press, would open and send compressed air through both pipes.  The positions of the blow-off pipes were designed to eject one part off the side of the die and the other part off the front of the die into a collection chute.  (Reference the picture below)  They were having issues when their blow-off system wasn’t consistently able to eject the 1 lb. part completely off the die.  In manually having to remove the parts, it would cause an unsafe environment as well as a slowdown in operations.  They found that EXAIR manufactures Intelligent Compressed Air Products and wondered if we could help.

Blow-off Setup

Blow-off Setup

With a lack of restriction at the end of the pipe, the air pressure will drop quickly as it travels through a relatively long length of pipe. The actuator, which was more than 3 feet away from the end of the pipes, had a line pressure of 90 psig (maximum that they could supply).  By the time the compressed air reached the ejection site, the pressure was much lower; thus, not quite removing the part from the die.  An example that I like to use is a garden hose attached to a spigot outside your house.  As you open the spigot, water will flow out of the hose at a slow velocity; not very strong, that is the same as air through an open pipe.  When you place your thumb partially over the end of a garden hose you restrict the flow and increase velocity. Engineered nozzles from EXAIR work the same way.  They restrict the flow at the nozzle, increasing the pressure for a more effective velocity and blow-off force.  Neal Raker wrote a great blog for EXAIR referencing how the nozzles work; called “What’s in a Nozzle?”

HP1125 2" High Power Flat Super Air Nozzle

HP1125 2″ High Power Flat Super Air Nozzle

I recommended the model HP1125, 2” High Power Flat Super Air Nozzle. It has a 2” wide air stream to allow more contact against the side of the triangle edge.  It has a force of 2.2 lbs. at 80 psig which is more than enough to eject the 1 lb. formed part.  As an added benefit, it only has a noise level of 83 dBA which is magnitudes more quiet than the open pipe.  Also in using the engineered nozzles, they were able to use much less compressed air in their blow-off, saving them over $1,000/year.  If you find that your open pipe blow-off is too loud, not effective, or uses way too much compressed air, you should contact an Application Engineer to see which engineered nozzle would best suit your application.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Maintenance Free And Proud Of It

Caller: Do you sell rebuild kits?
Me: Yes, but…why?

This is a WAY oversimplified summary of the start of a popular conversation that an EXAIR Application Engineer might have with a caller looking to restore a particular product to proper operation. Truth is, most of our products have no moving parts, and if you supply them with clean, dry air, they’ll run maintenance free, darn near indefinitely. We’ve documented this in specific cases regarding a Reversible Drum Vac from 1999, a Vortex Tube from 1987, and a Cold Gun from 1985.

Product & year of manufacture, from top left: Reversible Drum Vac (1999,) Cold Gun (1985,) Vortex Tube (1987.) All still performing within factory specifications.

Product & year of manufacture, from top left: Reversible Drum Vac (1999,) Cold Gun (1985,) Vortex Tube (1987.) All still performing within factory specifications.

Caller: So…DO you sell rebuild kits?
Me: Yes, but…only when necessary.

It’s important to note that none of the products mentioned above needed any parts replaced to return to service. Sometimes, a good cleaning is all that’s required. We can help you with a video tutorial if you want to know how to restore a Reversible Drum Vac, an Air Knife, or an Atomizing Spray Nozzle, for instance.  And we’re making new videos all the time for product maintenance, operation, tips & tricks, etc.

Caller (again): So…you DO sell rebuild kits?
Me: Yes, of course!  I mean, who wouldn’t sell rebuild kits for their products?

Take our Safety Air Guns, for example. We offer Service Kits, if the trigger and/or internal valve of a Soft Grip or Heavy Duty Safety Air Gun starts to wear or leak, it’s super easy to replace. We’ve also got replacement springs for the “fail shut” feature of the ball valve of a Super Blast Safety Air Gun. Just about anything else that could be wrong with a Safety Air Gun’s performance can be addressed by cleaning the nozzle.

We also recently added Rebuild Kits for our Atomizing Spray Nozzles to inventory. These contain all of the seals (and moving parts, for the No-Drip models) to restore an EXAIR Spray Nozzle to rated performance.

Keep your EXAIR Atomizing Spray Nozzle (left) in perfect working order with a simple & inexpensive Rebuilt Kit (right of the nozzle.) Contact an Application Engineer to select the one for your product.

For other products, we can also provide replacement gaskets & seals for the Reversible Drum Vac & Chip Trapper products, O-rings for the Line Vacs, Chip Vacs, and Heavy Duty Dry Vacs, new elements for Filter Separators & Oil Removal Filters…just to name a few.

Bottom line: if your EXAIR product isn’t performing the way it used to, give me a call.  It will be my pleasure to help you get it working like new, so that you can continue to get the most out of it.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR’s High Velocity and Adjustable Air Jets – Now Available in Stainless Steel

Newly released, the EXAIR High Velocity Air Jet and Adjustable Air Jet are now available in Type 303 Stainless Steel, providing greater durability, corrosion resistance and a higher maximum temperature rating of 400 °F.  Type 303 stainless steel has good resistance to mildly corrosive atmospheres along with good oxidation resistance at elevated temperatures, making the stainless steel Air Jet a great choice for blowoff or part drying in your harsh environment. Both types of Air Jets are also available in brass, for applications at 275°F and below, and when corrosion resistance is not as critical.

6013ss

Model 6013SS – High Velocity Air Jet

Air Jets utilize the Coanda Effect – wall attachment of a high velocity fluid – to produce air motion in their surroundings. As illustrated above, a small amount of compressed air to the inlet (large black arrow) is throttled through an internal ring nozzle above sonic velocity.  A vacuum is produced, resulting in large volumes of surrounding, or “free” air, being pulled in through the jet (blue arrows.)

air jet How Air Jets Work

Both the outlet and inlet can be ducted for remote positioning applications.

If the end is blocked, flow simply reverses at well below OSHA dead end pressure requirements, ensuring safe operation.

The High Velocity Air Jet comes standard with an .015″ shim, and a Shim Set is offered that includes .006″ and  .009″ shims to provide additional adjustability and control.  The Adjustable Air Jet has a variable gap design, and can be adjusted and locked to meet the required airflow and thrust parameters.

When you are needing a simple solution to reduce excessive air consumption and noise levels on compressed air blowoff operations, EXAIR has a large line of Air Nozzles and Jets to solve your problems. You can contact an Application Engineer to discuss which Air Jet or Nozzle to best fit your application.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

 

Adjustability=Flexibility=Wide Ranging Performance

Recently, I moved into a new house, and it didn’t have bathroom vent fans.  In order to prevent mold and mildew growth from the humid shower air; we decided to install them ourselves.  Going to the local home goods store, we were faced with a wall of options, with factors such as noise level, CFM rating and of course price.  Going over the myriad of possibilities was headache inducing and of course, the bathroom size was borderline between a small and mid-size unit. The decision came down to – pay more and oversize it or risk installing an undersized unit.  If only they made a unit to cover a wide variety of conditions.

Here at EXAIR, we make many types of Intelligent Compressed Air Products.  Many times, when we are talking to customers, the right size or performance needed isn’t quite clear.  Fortunately, many of the products we make are flexible, and allow for adjustability and increased range of performance to best match the specific need of the application.

For example, The Super Air Knives and Super Air Wipes have available Shim Sets to increase or decrease the air gap and change the force and flow.  The shims are easily installed, and come in a wide choice of sizes. Super Air Knives are available, from stock, in aluminum, 303SS, 316SS, and PVDF. Super Air Wipes are made from aluminum or 303 SS.

The Super Air Amplifiers also have available patented Shim Sets to fix the air flow at a predetermined setting. Adjustable Air Amplifiers have an infinitely adjustable air gap which can easily be set to match the application needs if a predetermined flow is not preferred. Adjustable Air Amplifiers also have a smaller footprint than Super Air Amplifiers and can also use the aforementioned shims to preset the air flow in applications where space is limited. These are available in 303 stainless steel and aluminum. We also have a high temperature option.

adjustable Air Amplifier

Adjustable Air Amplifier

Within our already enormous and flexible Air Nozzles & Jets product line, the Flat Super Air Nozzles have available Shim Sets to provide the ability to adjust the force and flow for blowoff or cleaning operation.  The model 1009 Adjustable Air Nozzle has an adjustable gap setting, allowing you to “tune in” the force and flow to meet the application requirement.  Also, the Adjustable Air Jet provides an adjustable gap setting to control the air flow performance. Flexibility also comes from the available materials of zinc/aluminum, aluminum, 303SS, 316SS and PEEK thermoplastic.

For vacuum generation, the Adjustable E-Vac allows for the vacuum and flow rate to be easily adjusted.  With a simple turn of the unit, the vacuum and flow levels can be changed to overcome porosity and increase or decrease the lifting power.

Adjustable EVac

Adjustable E-Vac

There are several other Intelligent Compressed Air Products that EXAIR manufactures that offer the adjustability and flexibility, such as Vortex Tubes and Adjustable Spot Coolers.

If only EXAIR manufactured bathroom fans, I could have ensured making the right choice and be able to match the performance to exactly meet my application needs.

Brian Bergmann
Application Engineer
Find us on the Web
Like us on Facebook

%d bloggers like this: