How to Save Money on Compressed Air

Compressed air can be one of the more expensive utilities to use in a facility, but a compressed air system is full of simple opportunities to increase efficiency and minimize the cost. Much like how you can take multiple steps to save electricity at your house there a few simple steps you can take to save your compressed air. These steps include finding and repairing leaks, compressor maintenance, minimizing pressure at the point of use, and turning the compressed air off when not in use. Implementing these steps and using the right tools to achieve them can lead to significant dollar savings – in fact our website case studies, other blog articles and catalog are filled with example after example of air (and dollar) savings success! And let’s be honest here, who doesn’t like saving money.

First off is finding your leaks. Leaks are one of the major wastes of compressed air in a system that could happen. Leaks in a compressed air system can account for wasting 20-30% of a compressors output. These leaks can commonly be found in pipe joints, devices that use the compressed air, quick connect fittings, and storage tanks. All of this compounds to wasting air much like a leaky faucet wastes water – little by little it grows until it simply needs to be addressed. One of the ways to help find leaks in your system is EXAIR’s affordable Ultrasonic Leak Detector. This leak detector uses ultrasonic waves to detect where costly leaks can be found so that they can be patched or fixed.

EXAIR Ultrasonic Leak Detector

Choose efficient end-use products. Engineered air knives, air amplifiers, air nozzles and safety air guns can dramatically outperform (use less air) than commercial air nozzles and in-house solutions such as drilled pipes, open air lines and other creative “fixes”. We have seen some very nice in-house solutions from customers who have put in some significant time and effort, but they all have one thing in common – they use more air than any of EXAIR’s engineered solutions.

Minimizing your pressure can also save you money by limiting the amount of compressed air that is being used. Pressure and volume go hand and hand, the higher the pressure the higher the volume of air and vice versa. By minimizing the pressure that you are using you are also minimizing the amount of air that is being used which means savings. Each CFM used can be associated with a certain price value so the less you use the more you save. You also cut down on the amount of work the compressor has to do and how often the compressor has to cycle. Pressure can be minimized using one of EXAIR’s Pressure Regulators to cut down on the amount of air being used.

EXAIR’s Pressure Regulators come in 4 different sizes

Turn off the compressed air when it is not in use. Just like how you wouldn’t leave the faucet running or lights on in a room that is not being used, don’t leave your compressed air running (insert bad dad joke). Constantly using compressed air even when not in use will cause the compressor to cycle more often wasting money. Each CFM has a price to it so don’t waste CFM’s blowing it back into the air and doing nothing. This can simply be done by adding one of EXAIR’s ball valve or solenoid valves to turn off when you are done using it. Also, if you want to take it another step farther you can look at using one of EXAIR’s Electronic Flow Controllers (EFC). The EFC uses a photo eye attached to a timer that will open a solenoid valve for a set amount of time when it detects an object within 3’ of the photo eye. This will turn the air on only when your product is in the air path and turn it off during any spaces in between.

EXAIR’s EFC in use

Compressor maintenance is another important step to minimizing the cost of compressed air. Neglected air compressors can cause a lot of issues ranging from expensive repairs to a decreases in efficiency. Wear and tear placed on the motor of an air compressor can cause the compressor to produce less compressed air (SCFM) at the same power consumption. This means you are paying the same amount of money and getting less out of it. Making sure that your compressor or any machine is always running at its optimal performance and should always be a priority for any facility.

There are many different ways to save on compressed air, these are just a few of them. Reducing air use will save money and reduce the demand on your compressor which in turn can prolong the life of your air compressor. If you have questions about how to save on compressed air or any of our engineered Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Top Factors for Air Compressor & System Maintenance

Performing regular maintenance on your compressor system helps to keep everything operating in peak condition and ensures you’re not wasting unnecessary energy. Just as you perform regular routine maintenance on your vehicles, a compressed air system also needs a little TLC to keep things running smoothly. Neglected maintenance items can lead to increased energy costs, high operating temperatures, and coolant carryover. Much of these issues can be eliminated simply by performing routine maintenance on the components of the system.

According to the Best Practices for Compressed Air Systems by the Compressed Air Challenge (1), components within the system that need maintained include: the compressor, heat exchanger surfaces, lubricant, lubricant filter, air inlet filter, motors, belts, and air/oil separators.  

The compressor and all surfaces of the heat exchanger need to be kept clean and free of contaminants. When these components are dirty, compressor efficiency is greatly reduced. Any fans and water pumps should also be regularly inspected to ensure that they’re functioning properly. The air inlet filter and piping should also be cleaned. The quality of the air in the facility will impact the frequency, refer to the manufacturer’s specifications for ideal intervals for performing scheduled maintenance.

The lubricant and lubricant filter must also be changed per manufacturer’s specifications. Old coolant can become corrosive, impacting useful life and damaging other components while reducing efficiency. While synthetic lubricants are available that have an extended life compared to standard coolants, this does not extend the life of the lubricant filter itself.

Belts should be routinely checked for tension (every 400 hours is reasonable) to alleviate bearing wear. Belts will stretch and wear under normal operation and must be adjusted periodically. It’s a good practice to keep some spares on hand in the event of a failure.

End use filters, regulators, and lubricators should also be periodically inspected and filter elements replaced as needed. If left unchecked, a clogged filter will increase pressure drop. This can cause both a reduction of pressure at the point of use or an increase in the pressure supplied by the compressor, leading to increased energy costs.

Another often overlooked maintenance item is leak detection and repair. Leaks contribute to unnecessary air usage, pressure drop, and increased energy costs. EXAIR offers an Ultrasonic Leak Detector that can be used to identify the leaks in your system and allow you to make the necessary repairs.

EXAIR Ultrasonic Leak Detector

In order to keep your system running in peak condition, regular maintenance is critical. By paying close attention to the manufacture’s recommendations, and implementing a regular maintenance schedule, you can ensure you’re getting the most out of your system components.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

(1) Scales, W. (2021). Best Practices for Compressed Air Systems : Second Edition (2nd ed.). The Compressed Air Challenge,.

Compressor system image courtesy of Compressor1 via Flickr Creative Commons License

Compressor Room Updates Improve Performance

I’d like to start out by saying a common theme I have observed over the past six months is a huge spike in DIY projects around the home. While everyone has been sent home to work and kids have been sent home to learn remotely, the home has become more than just a resting place. It is an office, school, recreation center, even movie theater. This led to an amazing year for home improvement big box stores and lots of people are tackling projects that they may have thought were beyond their level. At this point in the year we are also seeing a lot of manufacturing that either hasn’t stopped or is starting back up safely, there are lots of projects around an industrial facility that can be tackled during downturns as well.

Compressor Room – 1

The main focus today will be on a critical room that generally gets shoved back into a deep dark corner, the compressor room. The air compressor is a piece of capital equipment that generates a companies 4th utility, compressed air. This is then sent throughout most of the facility and utilized at critical points within production. Air compressors have changed their look over the years and are still often crammed into a small dimly lit room that no one wants to venture into. Having an outdated compressor room can also be causing undesirable performance and lack luster performance as well. Here’s a few items that can more often than not be addressed pretty simply to improve the overall appearance and most importantly the performance of the compressors.

Clean air intake on a screw compressor – 2

First, clean air intake. Rather than letting the compressor suck air in from the room that may be stagnant or even worse, just sucking in the hot air coming off the heat exchangers on the compressor and causing elevated compressed air temps. This fix can include ducting clean air from outside of the facility to ensure micro-debris from within the facility isn’t being pulled in. While pulling in ambient air from outside the facility will still require a filter that will need to be maintained. If a large single source is used, that is perfectly acceptable. To step this project up multiple smaller inlets that are each controlled by a damper would permit variability to match ambient conditions on temperature.

Industrial exhaust fan – 3

Second, install an exhaust fan that feeds the air not just out of the room, yet out of the facility if at all possible. This helps to promote a through-flow of air with the clean air intake and keep from recirculating dirty already cycled air. This will also help any form of system based air treatment that relies on an exchange of heat, such as a refrigerant dryer. Again, a fan that stays on constantly would be the base level fix, step this up by adding a thermostatically controlled system so the fan doesn’t run continuously.

Third, if you heat your facility throughout the winter, use that hot exhaust air from the compressors to reclaim the heat of the compression cycle and optimize your return on using electricity. This can be done by strategic routing of the exhaust ductwork mentioned above, and can be stepped up to have thermostatically controlled dampers on the ducts to open and flow the air through an adjacent room for cooler months rather than exhaust straight out during the warm Summer months.

If you would like to discuss any of these topics or any of your compressed air point of use applications, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

 1 – Air Compressor in Engine Room – retrieved from, Work With Sounds / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0) – https://commons.wikimedia.org/wiki/File:Air_compressor_in_engine_room.JPG

2 – Screw Compressor 1 – retrieved from, Endora6398 / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0) – https://commons.wikimedia.org/wiki/File:Screw_compressor_1.jpg

3 – Industrial Exhaust Fan – retrieved from , Saud / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0) – https://commons.wikimedia.org/wiki/File:Industrial_Exhaust_Fan.jpg

Compressed Air System Maintenance

Air Compressor and Storage Tanks

Compressed air is the life blood of a manufacturing plant, and the air compressor would be considered the heart. To keep things “fit”, it is important to check all areas and to optimize your system to keep your plant running safely and efficiently. You do not have to be a doctor to do these “operations”. If your compressor fails, the entire facility will stop working. In this blog, I will cover some simple preventative maintenance that can really help you.

As margins get tighter and cost of manufacturing climbs, industries are looking into other areas to be more economical. A big focus today is the compressed air system. Compressed air is considered to be a “forth” utility behind gas, water, and electricity, and it is a necessary to run your pneumatic systems. But it is the least efficient of the utilities. So, it is very important to use this utility as practical as possible and to use a PM program to keep it going.

If we start at the beginning of your compressed air system, this would jump us to the air compressor. This is the machine that uses an electric or gas motor to spin a crank. It compresses the ambient air into a small volume to generate stored energy to be used by your pneumatic systems. Because the air compressor is complex and intricate, I would recommend a trained service personnel to do the maintenance. But, if your staff is familiar with air compressors, I wrote a blog to help look at certain parts periodically. You can read it here: “6 Basic Steps for Good Air Compressor Maintenance (And When to Do Them)”.

The next part after the air compressor is to look at the aftercoolers, compressed air dryers, receiver tanks, filters, and condensate drains. Some facilities may only have some of these items.

The aftercoolers are designed to cool the exit air from your air compressor. It uses a fan to blow ambient air across coils to lower the compressed air temperature. It is easy to check the fan to verify that it is spinning and to keep the coils clean from debris.

The compressed air dryers can range in size and type. For the refrigerant type air dryers, you should periodically check the freon compressor with ohm and amp readings, the condensers for cleaning, and the super heat temperature as well. For desiccant type air dryers, you will need to check the operation of the valves. Valves are used to regenerate one side of the desiccant bed. The valves can fail and stick either open or closed. In either way, if the desiccant cannot regenerate, then it will allow moisture to go down stream and eventually destroy the desiccant beads.

The receiver tanks have safety relief valves that will need to be checked to make sure that they are not leaking. If they are, they should be changed.

As for the filters, they collect contamination from the compressed air stream. This will include liquid water, oil, and dirt. A pressure drop will start to increase with the contaminants, which will reduce the potential energy. If they do not have pressure drop indicators, you should have two points of references for pressure readings. You should change the filter elements when the pressure drop reaches 10 PSID (0.7 bar) or after 1 year.

With all these items above, water is created. There should be condensate drains to discard the water. The most efficient types of condensate drains are the zero loss drains. Most condensate drains will have a test button to be pressed to verify that they open. If they do not open, they should be replaced or fixed. Do not place a valve on them and partially open for draining. For float type drains, they will have a pin inside that can be pressed to open. You can verify that all the liquid has been expelled.

The distribution system are the pipes and tubes that run compressed air from the supply side to the demand side of your pneumatic system. One of the largest problems affecting the distribution system are leaks. That quiet little hissing sound from the pipe lines is costing your company much money. A study was conducted by a university to determine the percentage of air leaks in a typical manufacturing plant. In a poorly maintained system, they found on average of 30% of the compressor capacity is lost through air leaks.

To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year. That is just for one inaudible leak in hundreds of feet of compressed air lines. Unlike a hydraulic system, compressed air is clean; so, leaks will not appear at the source. So, you have to find them by some other means.

Digital Flowmeter

 

EXAIR Ultrasonic Leak Detector

Most leaks occur where you have threaded fittings, connections, hoses, and pneumatic components like valves, regulators, and drains. EXAIR has two products in our Optimization product line that are designed to help find leaks in your compressed air system.

The Ultrasonic Leak Detectors can find air leaks, and the Digital Flowmeters can monitor your system for loss of air. When an air leaks occur, it emits an ultrasonic noise caused by turbulence. These ultrasonic noises can be at a frequency above audible hearing for human. The EXAIR Ultrasonic Leak Detector can pick up these high frequencies to make inaudible leaks audible.

With the Digital Flowmeters, you can continuously check your system for waste and record it with a USB Datalogger.  Air leaks can occur at any time within any section of your pneumatic system.  With a Digital Flowmeter, you can also isolate an area to watch for any flow readings; telling you that the air is leaking in that section.  With both products included in your leak-preventative program, you will be able to reduce your waste and optimize your compressed air system.

Family of Nozzles

At the point-of-use areas, this is the easiest target area for compressed air maintenance. If you are using open tubes or drilled pipes for blowing, they are loud, inefficient, and unsafe. They can be easily change to an engineered blow-off product from EXAIR which are very efficient and OSHA safe. EXAIR offers a range of Super Air Nozzles and Super Air Knives to simply replace the current blow-off devices that overuse compressed air. If we go back to the beginning of your system, the air compressor is a mechanical device which will have a MTBF, or Mean Time Between Failures. The hour meter on your air compressor is like a life monitor. By using less compressed air, your air compressor will extend that time in MTBF.

Keeping your compressed air system running optimally is very important for a business to run. With a simple maintenance program, it can help you with your pneumatic operations and energy savings. Like stated above, your compressed air system is the life blood of your company, and you do not need a PhD to keep it well maintained. Just follow the target areas above. If you would like to discuss further about the health of your compressed air system, you can contact an Application Engineer at EXAIR. We will be happy to help “diagnose” a solution.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb