Leaks and Why They Matter

Leaks can be discussed quite frequently around industrial environments. These can be refrigerant leaks, water leaks, gas leaks, even information leaks. All of these leaks have one thing in common, they all cost the company money in the end. I often think about several classic cartoons when I hear about leaks being fixed as they are found. They can become a little overwhelming like the “Squirrel” from the movie Ice Age 2.

1 – Ice Age 2 – Scrat – Mission Impossible

When it comes down to it, not many leaks create good results, that is why I want to take a second and educate on the costs your facility may be seeing from compressed air leaks. The leaks within an industrial environment can often account for up to 30% of the total compressed air generated.

So let’s take a look at that, the cost of compressed air is derived from the kWh cost the facility pays to the utility company. Here in the Midwest the average cost is around $0.08 / kWh. The equation to convert this to cost per cubic foot of compressed air is shown below. This formula assumes that the compressor generates four standard cubic feet of compressed air per horsepower of compressor. Again this is an industry acceptable assumption.

The size of a leak will determine how much compressed air is wasted, most of these leaks are not even to the audible range for the human ear which leads them to be undetected for long periods of time. A leak that is equivalent to a 1/16″ diameter orifice can result in an annual loss of more than $836.50 USD. While the scale of this number when compared to the annual revenue of a company may be small, the fact remains that this single leak would more than likely not be the only one. This isn’t the only way leaks will cost money though.

Leaks can also generate false demand which can result in pressure drops on a system. When the pressure on a production line drops this could result in unscheduled shutdowns. Often, when a pressure drop is observed the quick answer is to increase the header pressure which causes even more energy to be utilized and even more compressed air will be pushed out of these leaks. That increase in system pressure comes at a price as well. When increasing a system pressure by 2 psi the compressor will consume an additional percent of total input power. This again will hit the bottom line and result in lower efficiency of operation for the facility.

If you hear that distinct hiss of compressed air leaks when you are walking through your facility, or even if you don’t hear the his and you know that a leak detection action plan is not being practiced and want to find out the best ways to get one in place, contact us. We are always willing to help you determine how to lower the leaks in your facility as well as reduce the system pressure required to keep your lines up and running by implementing engineered solutions at the point of use.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – Ice Age 2 – Mission Impossible Scrat – retrieve from YouTube – https://www.youtube.com/watch?v=S-HniegbnFs

 

Compressor Maintenance: Steps to Minimize Wear

While I was still in college, I worked in a meat processing plant as a Project Engineer in the maintenance department. During my time in the maintenance department I learned the importance of proper maintenance on machines. A meat processing plant is one of the most taxing environments on machines as they will have to survive in extreme cold temperatures to extreme hot temperatures; they are also put through deep sanitation wash downs multiple times a day sometimes for periods of over an hour. The plant really put into perspective the importance of preventative maintenance of machines. This includes utilities such as a boiler and of course your air compressor.

Industrial Air Compressors
Neglected air compressors can cause a lot of issues ranging from expensive repairs to a decrease in efficiency. Wear and tear placed on the motor of an air compressor can cause the compressor to produce less compressed air (SCFM) at the same power consumption. This means you are paying the same amount of money for less compressed air.

A primary focus to prevent an increased amount of wear on your compressor motor is to seal up compressed air leaks. Leaks can cause the compressor to cycle more often and/or refill receiver tanks on a more frequent basis, causing the motor to run more often. With the motor having to run more often to keep the air present, it will wear down faster. Using EXAIR’s Ultra Sonic Leak detector, leaks can be found in the pipes so that they can be sealed up.

EXAIR Ultrasonic Leak Detector
Another important maintenance is to make sure that the compressor gets cleaned. As the motor runs excess heat is generated; the heat generated then needs to be dissipated which is done by exhausting air through vents. If these vents become dirty or blocked and the air cannot escape then the temperature of the motor and winding resistance will increase; this in turn will shorten the life of the motor and increase the energy consumption. Using one of EXAIR’s Super Air Nozzles is a sure way to keep your compressor vents clean and dust free in a quiet and efficient manner.
EXAIR Nozzles
There are many other items that require maintenance over time such as keeping belts in good condition and the drain traps clean. Good maintenance on any item whether it’s a production machine or  air compressor keeps it running a peak performance helping you save money and headaches in the long run. 

If you have any questions about compressed air systems or want more information on any EXAIR’s of our products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Why Start a Leak Prevention Program?

All compressed air systems will have some amount of leakage. It is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs, and reduce compressor operation time which can extend its life and lower maintenance costs.

The Compressed Air Challenge estimates an individual compressed air leak can cost thousands of dollars per year when using $0.07/kWh.

  • 1/16″ diameter hole in excess of $700/year
  • 1/8″ hole in excess of $2900/year
  • 1/4″ hole in excess of $11,735 per year

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.

A successful Leak Prevention Program consists of several important components:

  • Document your Starting Compressed Air Use – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Find the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    Model 9061
    Model 9061
  • Record the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Plan to repairs leaks – Make this a priority and prioritize the leaks. Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Record the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

An effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Leaks and Their Impact on Your Compressed Air System

Leaks are one of the major wastes of compressed air that could happen in a system. But what affect can leaks have on your system and how can these leaks be found? Total leaks in a compressed air line can account for wasting almost 20-30% of a compressors output. These leaks can commonly be found in areas were a pipe comes in contact with a joint, connections to devices that use the compressed air, and storage tanks.

There are four main affects that a leak in your compressed air system can have and they are as follows; 1) cause in pressure drop across the system, 2) shorten the life of almost all supply system equipment, 3) increased running time of the compressor, and 4) unnecessary compressor capacity.

  • A pressure drop across your compressed air system can lead to a decreased in efficiency of the end use equipment (i.e. an EXAIR Air Knife or Air Nozzle). This adversely effects production as it may take longer to blow off or cool a product or not blow off the product well enough to meet quality standards.
  • Leaks can shorten the life of almost all supply system components such as air compressors, this is because the compressor has to continuously run to make up for the air loss from the leak. By forcing the equipment to continuously run or cycle more frequently means that the moving parts in the compressor will wear down faster.
  • An increased run time due to leaks can also lead to more maintenance on supply equipment for the same reasons as to why the life of the compressor is shortened. The increase stress on the compressor due to unnecessary running of the compressor.
  • Leaks can also lead to adding unnecessary compressor size. The wasted air that is being expelled from the leak is an additional demand in your system. If leaks are not fixed it may require a larger compressor to make up for the loss of air in your system.
EXAIR’s Ultrasonic Leak Detector

All of these effects are an additional cost that is tacked onto the already existing utility cost of your compressed air. But luckily there are ways to find these leaks and patch them up before it can get to out of control. One of the ways to help find leaks in your system is the EXAIR’s affordable Ultrasonic Leak Detector. This leak detector uses ultrasonic waves to detect were costly leaks can be found so that they can be patched or fixed.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.    

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook