Starting a Leak Prevention Program

Since all compressed air systems will have some amount of leakage, it is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs,and reduce compressor operation time which can extend its life and lower maintenance costs.

SBMart_pipe_800x

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.  Instead of a log system, the tag may be a two part tag.  The leak is tagged and one part of the tag stays with the leak, and the other is removed and brought to the maintenance department. This part of the tag has space for information such as the location, size, and description of the leak.

The best approach will depend on factors such as company size and resources, type of business, and the culture and best practices already in place. It is common to utilize both types where each is most appropriate.

A successful Leak Prevention Program consists of several important components:

  • Baseline compressed air usage – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Identify the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    ULD_Pr
    Using the Model 9061 Ultrasonic Leak Detector to search for leaks in a piping system
  • Document the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Prioritize and plan the repairs – Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Document the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

In summary – an effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

“Go Green” in 2019 With EXAIR’s Super Air Nozzles & Jets!

If one of your New Year’s resolutions for 2019 is to help improve your impact on the environment, look no further than EXAIR’s Engineered Air Nozzles & Jets. By upgrading your blowoff, cooling, and drying operations to use one of our Super Air Nozzles or Jets you can save as much as 80% of your compressed air usage when compared with an inefficient solution.

open tubes
Example of a manifold of open pipes

An open copper pipe or tube, even if “flattened” as we’ll commonly see, wastes an excessive amount of compressed air. This wasted compressed air can create problems in the facility due to unnecessarily high energy costs and the pressure drop that can be experienced affecting other processes. In addition to simply using too much compressed air, an open pipe or tube will often produce sound levels in excess of 100 dBA. At these sound levels, according to OSHA, permanent hearing damage will occur in just 2 hours of exposure.

OSHA Chart

By simply replacing the open tubes and pipe with an EXAIR Super Air Nozzle, you can quickly reduce air consumption AND reduce the sound level. Sound level isn’t the only thing an OSHA inspector is going to be concerned about regarding an open pipe blowoff, in addition OSHA 1910.242(b) states that a compressed air nozzle used for blowoff or cleaning purposes cannot be dead-ended when using with pressures in excess of 30 psig. I don’t know if you’ve ever tried to use an air gun with 30 psig fed to it, but the effectiveness of it is dramatically reduced. This is why there needs to be a device installed that’ll prevent it from being dead-ended so that you can operate at a higher pressure.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

EXAIR’s Super Air Nozzles are designed with fins that serve two purposes. They help to entrain ambient air from the environment, allowing us to maximize the force and flow from the nozzle but keeping the compressed air consumption minimal. In addition, these fins are what prevents the nozzle openings from being completely blocked off. Using an OSHA compliant compressed air nozzle for all points where a blowoff operation is being performed should be a priority. Each individual infraction will result in a fine if you’re subject to an OSHA inspection. Inspections are typically unannounced, so it’s important to take a look around your shop and make sure you’re using approved products.

sag-osha-compliant
The fins along the outside of the Super Air Nozzle prevent it from being dead-ended

So, go ahead and make 2019 the year of energy savings, increased efficiency, and improving worker safety. You’ll find all of the tools you need in EXAIR’s 32nd edition of the catalog. Click here if you’d like a hard copy sent directly to you! Or, get in touch with us today to find out how you can get saving with an Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Intelligent Compressed Air: Estimating Your Leakage Rate

waste

The electricity costs associated with the generation of compressed air make it the most expensive utility within an industrial environment. In a   poorly maintained compressor system, up to 30% of the total operational costs can be attributed simply to compressed air leaks. While this wasted energy is much like throwing money into the air, it can also cause your compressed air system to lose pressure. This can reduce the ability of the end use products to function properly, negatively impacting production rates and overall quality. Luckily, it’s quite easy to estimate the leakage rate and is something that you should be including in your regular PM schedule.

According to the Compressed Air Challenge, a well-maintained system should have a leakage rate of less than 5-10% of the average system demand. To estimate what your leakage rate is across the facility, first start by shutting off all of the point of use compressed air products so that there’s no demand on the system. Then, start the compressor and record the average time it takes for the compressor to cycle on/off. The compressor will load and unload as the air leaks cause a pressure drop from air escaping. The percentage of total leakage can be calculated using the following formula:

Leakage % = [(T x 100) / (T + t)]

Where:

T = loaded time (seconds)

T = unloaded time (seconds)

The leakage rate will be given in a percentage of total compressor capacity lost. This value should be less than 10% for a well-maintained system. It is not uncommon within a poorly maintained system to experience losses as high as 20-40% of the total capacity and power.

A leak that is equivalent to the size of a 1/16” diameter hole will consume roughly 3.8 SCFM at a line pressure of 80 PSIG. If you don’t know your company’s air cost, a reasonable average is $0.25 per 1,000 SCF. Let’s calculate what the cost would be for a plant operating 24hrs a day, 7 days a week.

3.8 SCFM x 60 minutes x $0.25/1,000 SCFM =

$0.06/hour

$0.06 x 24 hours =

$1.44/ day

$1.44 x 7 days x 52 weeks =

$524.16 per year

A small leak of just 3.8 SCFM would end up costing $524.16. This is just ONE small leak! Odds are there’s several throughout the facility, quickly escalating your operating costs. If you can hear a leak, it’s a pretty severe one. Most leaks aren’t detectable by the human ear and require a special instrument to convert the ultrasonic sound created into something that we can pick up. For that, EXAIR has our Model 9061 Ultrasonic Leak Detector.

ULD_Pr
Model 9061 ULD w/ parabola attachment checking for compressed air leaks

Implementing a regular procedure to determine your leakage rate in the facility as well as a compressed air audit to locate, tag, and fix any known leaks should be a priority. The savings that you can experience can be quite dramatic, especially if it’s not something that has ever been done before!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Happy Thanksgiving!

Here’s to enjoying the company of good friends and family. Everyone at EXAIR wishes all of you a happy Thanksgiving, and would like to express our gratitude for being our customers and vendors – we appreciate you.

EXAIR will be closed Thursday and Friday, November 22 and 23 to be with our family and friends.

Enjoy the holiday,
The entire EXAIR Team

The Super Air Knife Vs. a Homemade Drilled Pipe Solution

A drilled pipe has been used for many years to blow compressed air across a span for cleaning, cooling, and drying.  They are a simple tool that was created from spare parts and many holes.  The cost to make this type of product is not expensive, but to use this product in your application is very expensive.  Similarly, an incandescent lightbulb is inexpensive to purchase, but it will cost you much more in electricity than a LED light bulb.  Since 1983, EXAIR has been innovating safe and efficient products to be used in compressed air systems.  In this blog, I will compare the drilled pipe with the Super Air Knife.

Even though you can find the components relatively easily to design your own drilled pipe, this blow-off design is very costly and stressful to your compressed air system.  Typically, the holes along the pipe are in a row next to each other.  As the airstream leaves from each hole, it will hit the airstream from the one next to it.  This will cause turbulent air flows which has inconsistent forces and loud noises.  Also, with turbulent air flows, the ability to entrain the surrounding ambient air is very small.  We call this the amplification ratio.  The higher the amplification ratio, the more efficient the blow-off device is.  For a drilled pipe, the amplification ratio is near 3:1 (3 parts ambient air to 1 part compressed air).

A colleague, Brian Bergmann, wrote a blog about the amplification ratio of the EXAIR Super Air Knife.  (Read it HERE.)  This blog demonstrates how EXAIR was able to engineer an efficient way to blow air across a span.  The unique design of the Super Air Knife creates an amplification ratio of 40:1 which is the highest in the market.   Unlike the drilled pipe, the gap opening runs along the entire knife for precise blowing.  This engineered gap allows for laminar air flow which has a low noise level, a consistent blowing force, and maximum amplification ratio.  With these benefits, the Super Air Knife can reduce the amount of compressed air required, which will save you money and save your compressed air system.

In comparing the drilled pipe to the Super Air Knife, I will relate both products in a simple cooling application.   Thermodynamics expresses the basics of cooling with an air temperature and an air mass.  Since both products are represented in the same application, the air temperature will be the same.   Thus, the comparison will be with the amount of air mass.  In this example, the customer did some calculations, and they needed 450 Lbs. of air to cool the product to the desired temperature.  At standard conditions, air has a density of 0.0749 lbs/ft3.  To convert to a volume of air, we will divide the weight by the density:

450 lbs. / (0.0749 lbs./ft3) = 6,008 ft3 of air

To meet this requirement, reference Table 1 below.  It shows the volume of air required by your compressed air system to meet this demand.  As you can see, your compressor has to work 13X harder to cool the same product when using a drilled pipe.  Just like the LED light bulbs, the Super Air Knife has more efficiency, more innovation, and uses less compressed air.  In turn, the Super Air Knife will save you a lot of money in electrical costs.  If you would like to see how much the Super Air Knife can save compared to the drilled pipe, we have that information in this blog.  (Read it HERE.)  For my reference, it will reduce the stress of your compressed air system.

if you would like to compare any of your current blow-off devices with an innovative EXAIR product, you can contact an Application Engineer.  We can do an Efficiency Lab to shine an LED light on saving energy and money with your compressed air.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Intelligent Compressed Air: Maintaining an Efficient Compressor System

compressor

The electrical costs associated with generating compressed air make it the most expensive utility in any industrial facility. In order to help offset these costs, it’s imperative that the system is operating as efficiently as possible. I’d like to take a moment to walk you through some of the ways that you can work towards making your compressed air system more efficient.

The first step you should take is to identify and fix any leaks within the distribution piping. According to the Compressed Air Challenge, up to 30% of all compressed air generated is lost through leaks. This ends up accounting for nearly 10% of your overall energy costs!! To put leaks in perspective, take a look at the graphic below from the Best Practices for Compressed Air Systems handbook.

air leaks cost

Compressed air leaks don’t just waste energy, but they can also contribute to other operating losses. If enough air is lost through leaks, this can also cause a drop in system pressure. This can affect the functionality of other compressed air operated equipment and processes. This pressure drop can affect the efficiency of the equipment causing it to cycle on/off more frequently or to not work properly. This can lead to anything from rejected products to increased running time. With an increase in running time, there’s also the need for more frequent maintenance and unscheduled downtime.

You can perform a compressed air audit in your facility using an EXAIR Model 9061 Ultrasonic Leak Detector. If you’d prefer someone come in and do this for you, there are several companies that offer energy audit services where this will be a focal point of the process.

ultrasonic_2
EXAIR Ultrasonic Leak Detector

Speaking of maintenance, proper compressor maintenance is also critical to the overall efficiency of the system. Like all industrial equipment, a proper maintenance schedule is required in order to ensure things are operating at peak efficiency. Inadequate compressor maintenance can have a significant impact on energy consumption via lower compressor efficiency. A regular preventative maintenance schedule is required in order to keep things in good shape. The compressor, heat exchanger surfaces, lubricant, lubricant filter, air inlet filter, and dryer all need to be maintained. This can be done yourself or through a reputable compressor dealer. The costs associated with these services are outweighed in the improved reliability and performance of the compressor. A well-maintained system will not cause unexpected shutdowns and will also cost less to operate.

The manner in which you use your compressed air at the point of use should also be evaluated. Inefficient, homemade solutions are thought to be a cheap and quick solution. Unfortunately, the costs to supply these inefficient solutions with compressed air can quickly outweigh the costs of an engineered solution. An engineered compressed air nozzle such as EXAIR’s line of Super Air Nozzles are designed to utilize the coanda effect. Free, ambient air from the environment is entrained into the airflow along with the supplied compressed air. This maximizes the force and flow of the nozzle while keeping compressed air usage to a minimum.

Another method of making your compressed air system more efficient is actually quite simple: regulating the supply pressure. By installing pressure regulators at the point of use for each of your various point of use devices, you can reduce the consumption simply by reducing the pressure. This can’t be done for everything, but I’d be willing to bet that several tasks could be accomplished with the same level of efficiency at a reduced pressure. Most shop air runs at around 80-90 psig, but for general blowoff applications you can often get by operating at a lower pressure. Another simple, but often overlooked, method is to simply shut off the compressed air supply when not in use. If you haven’t yet performed an audit to identify compressed air leaks this is even more of a no-brainer. When operators go to lunch or during breaks, what’s stopping you from just simply turning a valve to shut off the supply of air? It seems simple and minute, but each step goes a long way towards reducing your overall air consumption and ultimately your energy costs.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Image taken from the Best Practices for Compressed Air Systems Handbook, 2nd Edition

Intelligent Compressed Air: Sliding-Vane Compressors

If you’re an active reader of the EXAIR blog, you’ve seen several posts over the last year about the various different types of air compressors. From the positive-displacement style of compressors (Rotary Scroll, Rotary Screw, Single and Double Acting Reciprocating Compressors,) as well as a review of a dynamic style (Centrifugal Compressors). In this blog, I’ll be discussing another of the positive-displacement variety: The Sliding-Vane Compressor.

Sliding Vane2
Air enters from the right, and as the compression chamber volume reduces due to counterclockwise rotation, the pressure increases until the air discharges to the left

In positive-displacement type compressors, a given quantity of air or gas is trapped in a compression chamber. The volume of this air is then mechanically reduced, causing an increase in pressure. A sliding-vane compressor will consist of a circular stator that is housed in a cylindrical rotor. The rotor then has radially positioned slots where the vanes reside. While the rotor turns on its axis, the vanes will slide out and contact the bore of the stator wall. This creates compression in these “cells”. An inlet port is positioned to allow the air flow into each cell, allowing the cells to reach their maximum volume before reaching the discharge port. After passing by the inlet port, the size of the cell is reduced as rotation continues and each vane is then pushed back into its original slot in the rotor.  Compression will continue until the cell reaches the discharge port. The most common form of sliding-vane compressor is the lubricant injected variety. In these compressors, a lubricant is injected into the compression chamber to act as a lubricant between the vanes and the stator wall, remove the heat of compression, as well as to provide a seal. Lubricant injected sliding-vane compressors are generally sold in the range of 10-200 HP, with capacities ranging from 40-800 acfm.

Advantages of a lubricant injected sliding-vane compressor include:

  • Compact size
  • Relatively low purchase cost
  • Vibration-free operation does not require special foundations
  • Routine maintenance includes lubricant and filter changes

Some of the disadvantages that come with this type of compressor:

  • Less efficient than the rotary screw type
  • Lubricant carryover into the delivered air will require proper maintenance of an oil-removal filtration system
  • Will require periodic lubricant changes

With the host of different options in compressor types available on the market, EXAIR recommends talking to a reputable air compressor dealer in your area to help determine the most suitable setup based on your requirements. Once your system is up and running, be sure to contact an EXAIR Application Engineer to make sure you’re using that compressed air efficiently and intelligently!

Tyler Daniel

Application Engineer

E-mail: TylerDaniel@exair.com

Twitter: @EXAIR_TD

Diagram:  used from Compressed Air Challenge Handbook