Intelligent Compressed Air: Utilization of the Coanda Effect

Henri Coanda was a Romanian aeronautical engineer most known for his work developing what is today known as the Coanda effect. The Coanda effect is the propensity of a fluid to adhere to the walls of a curved surface. A moving stream of fluid will follow the curvature of the surface rather than continuing to travel in a straight line.  This effect is used in the design of an airplane wing to produce lift. The top of the wing is curved whereas the bottom of the wing remains straight. As the air comes across the wing, it adheres to the curved surface, causing it to slow down and create a higher pressure on the underside of the wing. This  is referred to as lift and is what allows an airplane to fly.


The Coanda effect is also the driving force behind many of EXAIR’s Intelligent Compressed Air Products. Throughout the catalog you’ll see us talking about air amplification ratios. EXAIR products are designed to take advantage of this phenomenon and entrain ambient air into the primary air stream. Compressed air is ejected through the small orifices creating air motion in their surroundings. Using just a small amount of compressed air as the power source, Super Air Knives, Air Nozzles, and Air Amplifiers all draw in “free” ambient air amplifying both the force and the volume of airflow.

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Super Air Knives provide the greatest amount of air amplification at a rate of 40:1, one part being the compressed air supply and 40 parts ambient air from the environment. The design of the Super Air Knife allows air to be entrained at the top and bottom of the knife, maximizing the overall volume of air. Super Air Nozzles and Super Air Amplifiers also use this effect to provide air amplification ratios of up to 25:1, depending on the model.

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

The patented shim design of the Super Air Amplifier allows it to pull in dramatic amounts of free surrounding air while keeping sound levels as low as 69 dBA at 80 psig! The compressed air adheres to the Coanda profile of the plug and is directed at a high velocity through a ring-shaped nozzle. It adheres to the inside of the plug and is directed towards the outlet, inducing a high volume of surrounding air into the primary air stream. Take a look at this video below that demonstrates the air entrainment of a Super Air Amplifier with dry ice:

Utilizing the Coanda effect allows for massive compressed air savings. If you would like to discuss further how this effect is applied to our Super Air Knives, Air Amplifiers, and Air Nozzles give us a call. We’d be happy to help you replace an inefficient solution with an Engineered Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

Intelligent Compressed Air: Bernoulli’s Principle


Daniel Bernoulli was a Swiss mathematician and physicist born in 1700. He is most known for the Bernoulli principle, published in his book Hydrodynamica in 1739. The Bernoulli’s principle states that an increase in speed of a fluid will result in a decrease in pressure. As a fluid moves from a wider pipe to a narrow one, the fluid begins to move faster. The given volume of the fluid moving from one point to another over a set amount of time will not change. In order for the same amount of fluid to pass through a smaller orifice, it must speed up. This is displayed quite well in the flow of a river. At wide, open spaces the river flows slowly. In areas that become narrow, for example by a canyon wall, the speed of the river’s flow increases dramatically.

The Bernoulli principle also provides an explanation for the lift that is created on an airplane wing. When air encounters an obstacle (in this case an airplane wing), its path will narrow as it flows around the object. As this stream of air speeds up, some of the energy from the random motion of the air molecules must be converted into energy of the stream’s forward flow. Pressure is created by the random motion of these air molecules. Transferring this energy into the stream flow then results in a drop in the air pressure. An airplane wing is shaped so that the air must move faster over it than under it. This causes the slower moving air underneath to exert more pressure on the wing than the air moving across the top. This is referred to as lift and is what allows an airplane to fly.

Temperatures are beginning to creep back up here in Cincinnati and just last week pitchers and catchers for the Cincinnati Reds reported for Spring Training. They’ll also be watching Bernoulli’s principle in action. The oft-dreaded (for batters, anyway) 12-6 curveball occurs due to the way the pitcher forces the ball to spin. Due to way he grips the ball across the laces and imparts this spinning motion, more air pressure forms on the top of the ball. This causes the bottom of the ball to accelerate downwards, resulting in the phenomenon that drives many baseball players crazy as they swing and miss due to a miscalculation of the ball’s position.


Some of EXAIR’s products also utilize the Bernoulli Principle. As the high-velocity air exits the nozzle of a Super Air Knife, a low pressure area is created that draws in surrounding ambient air at a rate of 40:1. The same also occurs with the Super Air Amplifiers, Adjustable Air Amplifiers, and Air Nozzles. If you’d like to discuss the application of any of our Intelligent Compressed Air Products, give an Application Engineer a call today.

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD


River image courtesy of Sasori33 via Creative Commons License
Reds image courtesy of Lisa via Creative Commons License

Intelligent Compressed Air: Distribution Piping

air compressor

An important component of your compressed air system is the distribution piping. The piping will be the “veins” that connect your entire facility to the compressor. Before installing pipe, it is important to consider how the compressed air will be consumed at the point of use. Some end use devices must have adequate ventilation. For example, a paint booth will need to be installed near an outside wall to exhaust fumes. Depending on the layout of your facility, this may require long piping runs.  You’ll need to consider the types of fittings you’ll use, the size of the distribution piping, and whether you plan to add additional equipment in the next few years. If so, it is important that the system is designed to accommodate any potential expansion. This also helps to compensate for potential scale build-up (depending on the material of construction) that will restrict airflow through the pipe.

The first thing you’ll need to do is determine your air compressor’s maximum CFM and the necessary operating pressure for your point of use products. Keep in mind, operating at a lower pressure can dramatically reduce overall operating costs. Depending on a variety of factors (elevation, temperature, relative humidity) this can be different than what is listed on directly on the compressor. (For a discussion of how this impacts the capacity of your compressor, check out one of my previous blogs – Intelligent Compressed Air: SCFM, ACFM, ICFM, CFM – What do these terms mean?) Once you’ve determined your compressor’s maximum CFM, draw a schematic of the necessary piping and list out the length of each straight pipe run. Determine the total length of pipe needed for the system. Using a graph or chart, such as this one from Engineering Toolbox. Locate your compressor’s capacity on the y-axis and the required operating pressure along the x-axis. The point at which these values meet will be the recommended MINIMUM pipe size. If you plan on future expansion, now is a good time to move up to the next pipe size to avoid any potential headache.

Once you’ve determined the appropriate pipe size, you’ll need to consider how everything will begin to fit together. According to the “Best Practices for Compressed Air Systems” from the Compressed Air Challenge, the air should enter the compressed air header at a 45° angle, in the direction of flow and always through wide-radius elbows. A sharp angle anywhere in the piping system will result in an unnecessary pressure drop. When the air must make a sharp turn, it is forced to slow down. This causes turbulence within the pipe as the air slams into the insides of the pipe and wastes energy. A 90° bend can cause as much as 3-5 psi of pressure loss. Replacing 90° bends with 45° bends instead eliminates unnecessary pressure loss across the system.

Pressure drop through the pipe is caused by the friction of the air mass making contact with the inside walls of the pipe. This is a function of the volume of flow through the pipe. Larger diameter pipes will result in a lower pressure drop, and vice versa for smaller diameter pipes. The chart below from the “Compressed Air and Gas Institute Handbook” provides the pressure drop that can be expected at varying CFM for 2”, 3”, and 4” ID pipe.

pressure drop in pipe

You’ll then need to consider the different materials that are available. Some different materials that you’ll find are: steel piping (Schedule 40) both with or without galvanizing, stainless steel, copper, aluminum, and even some plastic piping systems are available.

While some companies do make plastic piping systems, plastic piping is not recommended to be used for compressed air. Some lubricants that are present in the air can act as a solvent and degrade the pipe over time. PVC should NEVER be used as a compressed air distribution pipe. While PVC piping is inexpensive and versatile, serious risk can occur when using with compressed air. PVC can become brittle with age and will eventually rupture due to the stress. Take a look at this inspection report –  an automotive supply store received fines totaling $13,200 as a result of an injury caused by shrapnel from a PVC pipe bursting.

Steel pipe is a traditional material used in many compressed air distribution systems.  It has a relatively low price compared to other materials and due to its familiarity is easy to install. It’s strong and durable on the outside. Its strength comes at a price, steel pipe is very heavy and requires anchors to properly suspend it. Steel pipe (not galvanized) is also susceptible to corrosion. This corrosion ends up in your supply air and can wreak havoc on your point-of-use products and can even contaminate your product. While galvanized steel pipe does reduce the potential for corrosion, this galvanizing coating can flake off over time and result in the exact same potential issues. Stainless Steel pipe eliminates the corrosion and rusting concerns while still maintaining the strength and durability of steel pipe. They can be more difficult to install as stainless steel pipe threads can be difficult to work with.

Copper piping is another potential option. Copper pipe is corrosion-free, easy to cut, and lightweight making it easy to suspend. These factors come at a significant increase in costs, however, which can prevent it from being a suitable solution for longer runs or larger ID pipe installations. Soldering of the connecting joints can be time consuming and does require a skilled laborer to do so, making copper piping a mid-level solution for your compressed air system.

Another lightweight material that is becoming increasingly more common in industry is aluminum piping. Like copper, aluminum is lightweight and anti-corrosion. They’re easy to connect with push-to-lock connectors and are ideal for clean air applications. Aluminum pipe remains leak-free over time and can dramatically reduce compressed air costs. While the initial cost can be high, eliminating potential leaks can help to recoup some of the initial investment. Aluminum pipe is also coated on the inside to prevent corrosion. While an aluminum piping system may be the most expensive, its easy installation and adaptability make it an excellent choice.

It can be easy to become overwhelmed with the variety of options at your disposal. Your facility layout, overall budget, and compressed air requirements will allow you to make the best choice. Once you’ve selected and installed your distribution piping, look to the EXAIR website for all of your point-of-use compressed air needs!

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

Super Air Wipe Helps Shield a Lens

Super Air Wipe Kit

A tier 2 automotive company makes small metal boxes with a process which includes laser welding and a vision inspection system. The machine was programmed to weld different components onto the metal enclosure. During the welding operation, an optical sensor would check the quality of the welds. The vision system used a lens to protect the sensor from welding slag and debris. After a few operations, they started seeing false positives in the welding areas, and the metal enclosure would be flagged for rejection. In investigating the issue, they found that the lens was getting dirty from the welding operation. Because of the sensitivity of the sensor, it would detect the debris and marks on the lens and signal for poor weld. The lens was doing its part in protecting the sensor from damage; but, they needed a way to shield the lens from dirt and slag during the welding operation and visual inspection.

With this process, the machine would weld metal fasteners onto an enclosure by laser. The optical sensor would move along the welded areas to check the quality. In a lead/lag operation, the vision system would check the welds after a few seconds of cooling. So, both operations were occurring at the same time but at different intervals. When they started to see the rejection rate increase, they would have to stop the operation, clean the lens, and verify the integrity of the welds. In some cases, they would have to replace the 1 ¼” diameter lens especially if a piece of welding slag marred the surface. With incorrect rejections and lens cleaning, downtime was hurting their production rates and cost.

This customer wanted to use compressed air because it is a powerful and invisible way to create a shield. Since EXAIR is a leader in efficient and effective ways to use compressed air, they contacted us for help. Initially, I suggested a Super Air Knife to deflect any slag and debris from the lens surface. I showed a prior solution to a very similar issue; “Air Shielding a Laser Lens” (Reference below). But, because of the proximity to the part and the limitation in space, the Super Air Knife  configuration in the solution below would make it impossible to use. They were looking for a product that could be mounted either flush or behind the surface of the lens and still protect it.

Air Shielding a Laser Lens

To accommodate for this request, we had to direct the compressed air stream at an angle. EXAIR manufacturers a product that can do just that, the Super Air Wipe. The design of the Super Air Wipe blows compressed air at a 30-degree angle toward the center in a 360-degree air pattern, just like a cone. It can be placed around the lens and still be able to create a “wall” of air to block any slag or debris from hitting the lens.

I recommended the model 2452SS, 2” Super Air Wipe Kit. This Super Air Wipe has the body, braided hose, hardware, and shims that is made from stainless steel. It can handle the high heat loads from the welding process as well as to allow for easy cleanup after a day of operating. The kit includes a filter, to keep the compressed air clean; a regulator, to finely tune the force requirement; and a shim set. The shim set includes two additional sets of shims that can be added to increase the force of protection if needed. With the kit, the customer can “dial” in the correct amount of force needed to keep the lens clean without using excessive amount of compressed air.

As an added benefit of saving compressed air, the Super Air Wipe uses the Coanda effect to maximize the entrainment of ambient air into the compressed air stream. This makes the unit very efficient and very powerful. The Super Air Wipe was mounted just behind the lens like the customer required (Reference mock picture below), and the sensor could examine the welds without any interference with the metal enclosure.

Laser Lens mock drawing

Visual inspections systems are highly accurate pieces of equipment, and a dirty lens will affect the performance. EXAIR has many ways to keep the lens clean with a non-contact invisible barrier to protect sensors, cameras, and lasers. If you have a similar application, you can contact an Application Engineer to determine the best way to keep the lens clean and your equipment functional. After mounting the Super Air Wipe, the customer above eliminated any false rejections, and dramatically decreased any downtime for cleaning or replacing the lens in his welding machine.

John Ball
Application Engineer
Twitter: @EXAIR_jb

Intelligent Compressed Air: How do Vortex Tubes Work

A vortex tube is an interesting device that has been looked upon with great fascination over the last 89 years since its discovery by George Ranque in 1928. What I’d like to do in this article is to give some insight into some of the physics of what is happening on the inside.

With a Vortex Tube, we apply a high pressure, compressed air stream to a plenum chamber that contains a turbine-looking part that we call a generator to regulate flow and spin the air to create two separate streams. One hot and one cold.

Below is an animation of how a Vortex Tube works:

Function of a Vortex Tube


The generator is a critical feature within a vortex tube that not only regulates flow and creates the vortex spinning action, it also aligns the inner vortex to allow its escape from the hot end of the vortex tube. Note the center hole on the photo below. This is where the cooled “inner vortex” passes through the generator to escape on the cold air outlet.

Vortex generator

Once the compressed air has processed through the generator, we have two spinning streams, the outer vortex and the inner vortex as mentioned above.  As the spinning air reaches the end of the hot tube a portion of the air escapes past the control valve; and the remaining air is forced back through the center of the outer vortex.  This is what we call a “forced” vortex.

If we look at the inner vortex, this is where it gets interesting.  As the air turns back into the center, two things occur.  The two vortices are spinning at the same angular velocity and in the same rotational direction.  So, they are locked together.  But we have energy change as the air processes from the outer vortex to the inner vortex.

If we look at a particle that is spinning in the outer vortex and another particle spinning in the inner vortex, they will be rotating at the same speed.  But, because we lost some mass of air through the control valve on the hot end exhaust and the radius is decreased, the inner vortex loses angular momentum.

Angular momentum is expressed in Equation 1 as:

L = I * ω

L – angular momentum
I – inertia
ω – angular velocity

Where the inertia is calculated by Equation 2:

I = m * r2

m – mass
r – radius

So, if we estimate the inner vortex to have a radius that is 1/3 the size of the outer vortex,  the calculated change in inertia will be 1/9 of its original value.  With less mass and  a smaller radius, the Inertia is much smaller.  The energy that is lost for this change in momentum is given off as heat to the outside vortex.

Adjustments in output temperatures for a Vortex Tube are made by changing the cold fraction and the input pressure.  The cold fraction is a term that we use to show the percentage of air that will come out the cold end.  The remaining amount will be exhausted through the hot end. You can call this the “hot fraction”, but since it is usually the smaller of the two flows and is rarely used, we tend to focus on the cold end flow with the “cold fraction”.  The “Cold Fraction”  is determined by the control valve on the hot end of the Vortex Tube. The “Cold Fraction” chart below can be used to predict the difference in temperature drop in the cold air flow as well as the temperature rise in the hot air flow.

Vortex Tube Cold Fraction

By combining the temperature drops expressed above with the various flow rates in which Vortex Tubes are available, we can vary the amount of cooling power produced for an application. The above cold fraction chart was developed through much testing of the above described theory of operation. The cold fraction chart is a very useful tool that allows us to perform calculations to predict vortex tube performance under various conditions of input pressure and cold fraction settings.

The most interesting and useful part about vortex tube theory is that we have been able to harness this physical energy exchange inside a tube that can fit in the palm of your hand and which has a multitude of industrial uses from spot cooling sewing needles to freezing large pipes in marine applications to enable maintenance operations on valves to be performed.

We would love to entertain any questions you might have about vortex tubes, their uses and how EXAIR can help you.

John Ball
Application Engineer

Twitter: @EXAIR_jb

Video Blog: Which EXAIR Air Knife Is Right For You?

The following short video explains the differences between the 3 styles of Air Knives offered by EXAIR – The Super, Standard and Full-Flow. All of these Models are IN STOCK, ready to ship, with orders received by 3:00 PM Eastern.

If you need additional assistance choosing your EXAIR Air Knife, please contact an application engineer at 800-903-9247.

Justin Nicholl
Application Engineer



Many Ways to $ave on Compressed Air Costs

Using compressed air in the plant is common for many types of processes.  Typical uses are drying, cooling, cleaning and conveying. Compressed air does have a cost to consider, and there are many ways to keep the usage and the costs as low as possible.  The first step is to use an EXAIR Intelligent Compressed Air Product, which has been engineered to provide the most performance while using the least amount of compressed air. The next step is to control the use of the air, to only have it on when needed.

EXAIR offers the EFC – Electronic Flow Control.  It offers the most comprehensive method to maximize the efficiency of compressed air usage.  It combines a photoelectric sensor with a timing control that operates a solenoid valve to turn on and off the air as required. With 8 different program types, an on/off mode that works with any process can be programmed ensuring that the minimum amount of compressed air is used.  You can use the online EFC Savings Calculator to see how quickly the savings add up!

EFC – Electronic Flow Control

Another method would be to use a solenoid valve with some other method of control. Depending on the process, the solenoid could be energized via a machine control output, or as simple as an electrical push button station. EXAIR offers solenoid valves in a variety of flow rates (from 40 to 350 SCFM) and voltages (24 VDC, 120 VAC and 240 VAC) to match the air flow requirements of the products we provide, while integrating into the facility and available supply voltages.

For control of the Cabinet Cooler Systems, the ETC – Electronic Temperature Control, uses a thermocouple to measure cabinet temperature and cycle the system on and off to maintain a precise cabinet temperature, and provides a digital readout of the internal temperatures and on the fly adjustment.  Also available is the Thermostat Control models, which utilize an adjustable bimetallic thermostat to control the solenoid valve, also cycling the unit on and off as needed to maintain a set cabinet temperature.

ETC – Electronic Temperature Control

There are several manual methods that can be used to control the compressed air.  A simple valve can be used to turn the air off when not needed, whether at the end of the work day, at break time, or whenever the air isn’t required.  We offer several options, from a foot controlled valve, to a magnetic base with on/off valve, to a simple quarter turn ball valve.

footpedalvalve (2)dualstand (2) manual_valves (2)


To discuss your processes and how an EXAIR Intelligent Compressed Air Product can control the air supply and save you money, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB