Pressure Gauges – Why You Need Them & How They Work

There is hardly a day I work that I am not talking about the importance of properly installed pressure gauges.  These small devices can often get overlooked or thought of as not necessary on an installation.  When troubleshooting or evaluating the compressed air consumption of an application, this is one of the first items I look for in the installation.

As Russ Bowman shows in the above video discussing proper piping sizes, you can see the importance of properly placed pressure gauges.  This shows the worst-case scenario where the pressure drop due to improper line sizes gives the false sense to the operator that they are achieving full line pressure when in fact they are not.  In order to accurately measure consumption rates, pressure AT THE INLET (within a few feet) to any compressed air product is necessary, rather than upstream at a point where there may be restrictions or pressure drops between the inlet and the gauge. So how exactly do these analog gauges measure the pressure of the compressed air at the installed locations?

Pressure Gauge Model 9011

The video below shows a great example of pressure increasing and decreasing moving the Bourdon tube that is connected to the indicating needle.  The description that follows goes more in-depth with how these internals function.

Most mechanical gauges utilize a Bourdon-tube. The Bourdon-tube was invented in 1849 by a French watchmaker, Eugéne Bourdon.  The movable end of the Bourdon-tube is connected via a pivot pin/link to the lever.  The lever is an extension of the sector gear and movement of the lever results in rotation of the sector gear. The sector gear meshes with spur gear (not visible) on the indicator needle axle which passes through the gauge face and holds the indicator needle.  Lastly, there is a small hairspring in place to put tension on the gear system to eliminate gear lash and hysteresis.

When the pressure inside the Bourdon-tube increases, the Bourdon-tube will straighten. The amount of straightening that occurs is proportional to the pressure inside the tube. As the tube straightens, the movement engages the link, lever, and gear system that results in the indicator needle sweeping across the gauge.

If you would like to discuss pressure gauges, the best locations to install them, or how much compressed air an application is using at a given pressure, give us a call, email, or chat.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Intelligent Compressed Air: Avoid Pressure Drop

A critical component to optimal performance of any compressed air operated product is ensuring sufficient compressed air flow. Simply put, inadequate air flow won’t allow you to get the job done.

As compressed air moves through the distribution system, it encounters friction inside of the walls of the pipe, tube, hose, etc. The diameter of the pipe, length, number of direction changes, and finish surface of the inner wall all play a part in this. A drop in air pressure will occur as a result of this friction. In addition to pressure drops experienced due to the distribution system, they can also occur at the point of use.

4597315810_fb8e3e4d26_o
Common analog pressure gauge

When designing and maintaining your compressed air system, pressure measurements should be taken across varying points to identify (and fix) any issues before they create a greater problem down the road. According to the Compressed Air Challenge, these are the places you should take regular pressure measurements to determine your system operating pressure:

  • Inlet to compressor (to monitor inlet air filter) vs. atmospheric pressure
  • Differential across air/lubricant separator
  • Interstage on multistage compressors
  • Aftercooler
  • At treatment equipment (dryers, filters, etc.)
  • Various points across the distribution system
  • Check pressure differentials against manufacturers’ specifications, if high pressure drops are noticed this indicates a need for service

*More recent compressors will measure pressure at the package discharge, which would include the separator and aftercooler.

Once you’ve taken these measurements, simply add the pressure drops measured and subtract that value from the operating range of your compressor. That figure is your true operating pressure at the point of use.

If your distribution system is properly sized and the pressure drops measured across your various equipment are within specifications, any pressure drop noticed at the point of use is indicative of an inadequate volume of air. This could be due to restrictive fittings, undersized air lines, hose, or tube, or an undersized air compressor. Check that the point of use product is properly plumbed to compressed air per the manufacturer’s specifications.

EXAIR Products are designed to minimize this pressure drop by restricting the flow of compressed air at the point of use. The more energy (pressure) that we’re able to bring to the point of use, the more efficient and effective that energy will be. The photo below shows two common examples of inefficient compressed air usage. With an open-ended blow off, a pressure drop occurs upstream inside of the supply line. If you were to measure the pressure directly at the point of use, while in operation, you’d find that the pressure is significantly lower than it is at the compressor or further up the line. In the other photo with modular style hose, some pressure is able to be built up but if it gets too high the hose will blow apart. These types of modular style hose are not designed to be used with compressed gases.

open end blow offs
They may be inefficient, but they sure are loud…

EXAIR’s Super Air Nozzles, on the other hand, keep the compressed air pressure right up to the point of discharge and minimize the pressure drop. This, in addition to the air entrained, allows for a high force while maximizing efficiency. If you’d like to talk about how an EXAIR Intelligent Compressed Air Product could help to minimize pressure drop in your processes give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

 

Pressure gauge photo courtesy of Cliff Johnson via Flickr Creative Commons License

Pressure – The Inner Working of the Basic Pressure Gauge

Everyday here at EXAIR we talk about pressure, specifically compressed air pressure. The other day I was looking up our model 9011, 1/4″ NPT Pressure Gauge , and it got me to wondering just how does this small piece of industrial equipment work. The best way to find out is to tear it apart.

9011_exair

Most mechanical gauges utilize a Bourdon-tube. The Bourdon-tube was invented in 1849 by a French watchmaker, Eugéne Bourdon.  The movable end of the Bourdon-tube is connected via a pivot pin/link to the lever.  The lever is an extension of the sector gear, and movement of the lever results in rotation of the sector gear. The sector gear meshes with a spur gear (not visible) on the indicator needle axle which passes through the gauge face and holds the indicator needle.  Lastly, there is a small hair spring in place to put tension on the gear system to eliminate gear lash and hysteresis.

When the pressure inside the Bourdon-tube increases, the Bourdon-tube will straighten. The amount of straightening that occurs is proportional to the pressure inside the tube. As the tube straightens, the movement engages the link, lever and gear system that results in the indicator needle sweeping across the gauge.

Pressure Gauge Top

The video below shows the application of air pressure to the Bourdon-tube and how it straightens, resulting in movement of the link/lever system, and rotation of the sector gear –  resulting in the needle movement.

If you need a pressure gauge or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Why 5 PSIG Matters

Last week I pointed out the important locations for measuring your compressed air system pressure throughout your compressed air system.   One of the critical points to measure system pressure was before and after each filter.  This leads into another question that I receive every once in a while, “How do I tell when the filter needs to be changed?”  The answer to this is easy, when you see more than a 5 PSIG pressure drop across the filter.  This means that the element within the filter has become clogged with sediment or debris and is restricting the volume available to your downstream products.

Filter
EXAIR 5 micron Auto Drain Filter Separator

 

This can lead to decreased performance, downtime, and even the possibility of passing contaminants through the filter to downstream point of use components.  In order to maintain an optimal performance when using EXAIR filter separators and oil removal filters, monitoring the compressed air pressure before and after the unit is ideal.

Replacement filter elements are readily available from stock, as well as complete rebuild kits for the filter units. Changing the filters out can be done fairly easily and we even offer a video of how to do it.

The life expectancy of a filter element on the compressed air is directly related to the quality of air and the frequency of use, meaning it can vary greatly.  If you tie a new filter onto the end of a compressed air drop that has not been used in years, you may get a surprise by the filter clogging rather quickly.   However, if you maintain your compressor and your piping system properly then the filters should last a long time. Generally we recommend checking your filters every 6 months.

If you have questions about where and why to filter your compressed air contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF