Pressure Gauges – Why You Need Them & How They Work

There is hardly a day I work that I am not talking about the importance of properly installed pressure gauges.  These small devices can often get overlooked or thought of as not necessary on an installation.  When troubleshooting or evaluating the compressed air consumption of an application, this is one of the first items I look for in the installation.

As Russ Bowman shows in the above video discussing proper piping sizes, you can see the importance of properly placed pressure gauges.  This shows the worst-case scenario where the pressure drop due to improper line sizes gives the false sense to the operator that they are achieving full line pressure when in fact they are not.  In order to accurately measure consumption rates, pressure AT THE INLET (within a few feet) to any compressed air product is necessary, rather than upstream at a point where there may be restrictions or pressure drops between the inlet and the gauge. So how exactly do these analog gauges measure the pressure of the compressed air at the installed locations?

Pressure Gauge Model 9011

The video below shows a great example of pressure increasing and decreasing moving the Bourdon tube that is connected to the indicating needle.  The description that follows goes more in-depth with how these internals function.

Most mechanical gauges utilize a Bourdon-tube. The Bourdon-tube was invented in 1849 by a French watchmaker, Eugéne Bourdon.  The movable end of the Bourdon-tube is connected via a pivot pin/link to the lever.  The lever is an extension of the sector gear and movement of the lever results in rotation of the sector gear. The sector gear meshes with spur gear (not visible) on the indicator needle axle which passes through the gauge face and holds the indicator needle.  Lastly, there is a small hairspring in place to put tension on the gear system to eliminate gear lash and hysteresis.

When the pressure inside the Bourdon-tube increases, the Bourdon-tube will straighten. The amount of straightening that occurs is proportional to the pressure inside the tube. As the tube straightens, the movement engages the link, lever, and gear system that results in the indicator needle sweeping across the gauge.

If you would like to discuss pressure gauges, the best locations to install them, or how much compressed air an application is using at a given pressure, give us a call, email, or chat.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Video Demonstration of Compounding Sound Levels

In industrial settings, having a single air nozzle or other blowoff product is often not the scenario that is seen.  Many applications require multiple points of blowoff, even if not in the same direction or for the same position within the machine.  In the scenario where multiple nozzles are used, sound levels can get tricky to calculate and is often thought of as a mystery.  If you follow our blog then you may have seen this excellent blog that shows all the math behind calculating the total decibels when multiple sources of noise will be present. The video below gives a demonstration of utilizing two of the EXAIR model 1100 – 1/4″ FNPT Super Air Nozzle.

In the video you see a model 1100 being operated and producing a sound level of 74 dBA from 3′ away from the nozzle point.  When the second nozzle is turned on (also producing 74 dBA individually), the pressure is adjusted back up to the same input pressure and the sound level meter registers 78 dBA from 3′ away.  Following the math laid out in the “excellent blog” link above, the sound level calculated comes out to be the same 78 dBA that is shown in the video using EXAIR’s Digital Sound Level Meter.

If you would like help determining the sound levels within your facility, check out the EXAIR Digital Sound Level Meter as well as reach out to an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Image of Ear auricle Listen by geraitCC0 Create Commons.

Georges J. Ranque and the Vortex Tube

The Vortex Tube was invented by accident in 1928, by George Ranque, a French physics student. He was performing experiments on a vortex-type pump that he had developed for vacuuming iron filings and noticed that warm air exhausted from one end and cold air from the other when he inserted a cone at one end of the tube! Ranque quickly stopped work on the pump, and started a company to take advantage of the commercial possibilities for this odd little device that produced both hot and cold air, using only compressed air, with no moving parts. The company was not successful, and the vortex tube was forgotten until 1945 when Rudolph Hilsch, a German physicist, published a widely read paper on the device.

How A Vortex Tube Works

A vortex tube uses compressed air as a power source, has no moving parts, and produces hot air from one end and cold air from the other. The volume and temperature of the two air streams is adjustable with a valve built into the hot air exhaust.  Temperatures as low as -50°F (-46°C) and as high as 260°F (127°C) are possible.

During the second world war Georges J. Ranque started developing steels that would be used in military aviation efforts. After the war he took a job at  Aubert et Duval steelworks as director of metallurgical laboratory where he continued developing alloys for use in the aviation industry.

In 1972 he published a book on the search for the Philosophers stone, a legendary chemical substance capable of turning base metals such as mercury into gold. And in 1973 he passed away in his home just outside of Paris.

If you have any questions of want more information on how we use our vortex tubes to better processes all over industry. Give us a call, we have a team of application engineers  ready to answer your questions and recommend a solution for your applications.

Jordan Shouse
Application Engineer
Find us on the Web http://www.exair.com/28/home.htm
Follow me on Twitter
Like us on Facebook

EXAIR Heavy Duty Safety Air Gun With Accessories Improves Effectiveness and Safety

1310-12
Model 1310-12 Heavy Duty Safety Air Gun, With 12″ Extension & 1100 Super Air Nozzle

In rugged industrial environments the EXAIR Heavy Duty Safety Air Gun delivers powerful blasts of compressed air right where it is needed.  It features a 3/8 NPT metal inlet to allow for increased air flow to the Super Air Nozzle of your choice and there are many configurations are available from stock.  It is constructed of a durable and robust cast aluminum body with an ergonomic and comfortable composite grip that allows for extended use without fatigue.

The Heavy Duty Safety Air Gun can be configured with extensions that are available in 6” increments up to 24” in length and 12” increments from 24” up to 72”.  Combine the extension with our optional Chip Shield for maximum operator safety and comfort.

 

Extension Tubes For Air Guns
Different Length Extensions For Every Application

 

Chip Shield
Chip Shields Offer Safety & Comfort For Operators

We offer a wide variety of nozzles to allow you to configure the Heavy Duty Safety Air Gun to you specific application.  EXAIR has a large selection of nozzles that are engineered to entrain surrounding air with the compressed air supply creating a synergistic blast that is very powerful.  Most importantly they operate much quieter than the limits of OSHA standard 29 CFR 1910.95(a) and can’t be “dead ended” therefore meeting OSHA standard 29 CFR 1910.242(b).

OSHA Chart
OSHA Maximum Allowable Noise Exposure

 

The EXAIR Heavy Duty Safety Air Gun is available in the configurations shown below or many others.  If you have an application you would like to discuss or to see how the Heavy Duty  Safety Air Guns will improve your process, give us a call, we are happy to help.

Heavy Duty Safety Air Gun Configuration Chart
Heavy Duty Safety Air Gun Sample Configurations

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook