The Battle of Cooling: Fans Vs. Air Amplifiers

So, you have a cooling application and don’t know what to choose; do you go with the age-old fan or something different. Fans are probably one of the most common items used for cooling in everyday life and chances are you have a few that are always cooling. These fans can be found in cars, at your home, in your computer, and many other places.

But there may be other items that might just blow away the competition (pun intended). This is where EXAIR’s Air Amplifiers step onto the scene. Air Amplifiers use a little bit of compressed air to entrain the surrounding ambient air to turn it into a large volume of air.

Axial Fan being used to cool down an electrical cabinet

When it comes to cooling with air, volume is key. Air cannot hold a lot of thermal energy (heat) so in order to cool something down you need a lot of it. This means that the unit that can produce the largest volume of air is going to produce more cooling. So, what is the difference between a fan and the air amplifiers and which is better?

Fans have been in use since late B.C.E. and are still in use today. Many of the fans used for cooling are centrifugal style fans which are also known as blowers. These systems use an impeller that consists of a central shaft with blades that form a circle around a central opening. Blowers produce a high volume of air at a high velocity and low pressure. Not only do blowers require significant space to install, they also require noticeable maintenance and will eventually need to be replaced. Another, and perhaps more important downside, is that a blower will increase the temperature of the outlet air which further reduces the air’s ability to absorb additional heat and effectively cool.

Super Air Amplifier Family

On the other hand, Air Amplifiers use a source of compressed air to form a thin stream of high velocity laminar flow of air to entrain the surrounding ambient air. By doing so you can create a focused blast of air for cooling. So the downside in this case is that if you do not have a source of compressed air, the Air Amplifier will not function for you. With a small amount of compressed air, Air Amplifiers will multiply the volume of air up to 25 times to produce the large volume of air needed to cool parts, films, castings and more.

Air Amplifiers are extremely inexpensive when compared to blower systems and can out perform a blower in many applications.

If you have questions about our Air Amplifiers, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Compressor Room Updates Improve Performance

I’d like to start out by saying a common theme I have observed over the past six months is a huge spike in DIY projects around the home. While everyone has been sent home to work and kids have been sent home to learn remotely, the home has become more than just a resting place. It is an office, school, recreation center, even movie theater. This led to an amazing year for home improvement big box stores and lots of people are tackling projects that they may have thought were beyond their level. At this point in the year we are also seeing a lot of manufacturing that either hasn’t stopped or is starting back up safely, there are lots of projects around an industrial facility that can be tackled during downturns as well.

Compressor Room – 1

The main focus today will be on a critical room that generally gets shoved back into a deep dark corner, the compressor room. The air compressor is a piece of capital equipment that generates a companies 4th utility, compressed air. This is then sent throughout most of the facility and utilized at critical points within production. Air compressors have changed their look over the years and are still often crammed into a small dimly lit room that no one wants to venture into. Having an outdated compressor room can also be causing undesirable performance and lack luster performance as well. Here’s a few items that can more often than not be addressed pretty simply to improve the overall appearance and most importantly the performance of the compressors.

Clean air intake on a screw compressor – 2

First, clean air intake. Rather than letting the compressor suck air in from the room that may be stagnant or even worse, just sucking in the hot air coming off the heat exchangers on the compressor and causing elevated compressed air temps. This fix can include ducting clean air from outside of the facility to ensure micro-debris from within the facility isn’t being pulled in. While pulling in ambient air from outside the facility will still require a filter that will need to be maintained. If a large single source is used, that is perfectly acceptable. To step this project up multiple smaller inlets that are each controlled by a damper would permit variability to match ambient conditions on temperature.

Industrial exhaust fan – 3

Second, install an exhaust fan that feeds the air not just out of the room, yet out of the facility if at all possible. This helps to promote a through-flow of air with the clean air intake and keep from recirculating dirty already cycled air. This will also help any form of system based air treatment that relies on an exchange of heat, such as a refrigerant dryer. Again, a fan that stays on constantly would be the base level fix, step this up by adding a thermostatically controlled system so the fan doesn’t run continuously.

Third, if you heat your facility throughout the winter, use that hot exhaust air from the compressors to reclaim the heat of the compression cycle and optimize your return on using electricity. This can be done by strategic routing of the exhaust ductwork mentioned above, and can be stepped up to have thermostatically controlled dampers on the ducts to open and flow the air through an adjacent room for cooler months rather than exhaust straight out during the warm Summer months.

If you would like to discuss any of these topics or any of your compressed air point of use applications, feel free to contact us.

Brian Farno
Application Engineer


 1 – Air Compressor in Engine Room – retrieved from, Work With Sounds / CC BY-SA ( –

2 – Screw Compressor 1 – retrieved from, Endora6398 / CC BY-SA ( –

3 – Industrial Exhaust Fan – retrieved from , Saud / CC BY-SA ( –

Undersized Regulators Create Performance Problems with Compressed Air

“I have a Cabinet Cooler installed on my panel but it isn’t getting the temperature down cold enough. Can you quote me for a duplicate system to install on this panel?” This was a recent inquiry from a customer regarding an electrical enclosure that they had installed in their plant. The Cabinet Cooler was producing cold air, but not enough to keep the cabinet at their desired temperature. It would seem logical that they need additional capacity, right? While that could be the case, in this instance it most definitely was not.

When we get questions like this, we first want to take a closer look at the current installation. The cooling capacity for each system is published in our catalog. BUT, in order to rate a cooling capacity for any type of cooling system, some assumptions must be made. All Cabinet Coolers are specified with 70°F compressed air fed to the Cabinet Cooler at a pressure of 100 PSIG. In addition, each cooler has a specified volume of air that it must utilize in order to produce that rated cooling capacity. If any one of those parameters change, so does the overall cooling power.

In this particular case, the customer had installed a non-EXAIR pressure regulator just upstream of the cooler. Upon looking at the specifications for this regulator, it was found that the overall volume of air it can deliver was just 10% of the overall volume needed to produce the rated 1700 Btu/hr. They didn’t need another Cabinet Cooler System, they just needed to remove that restriction! Upon learning that it needed 100 PSIG, they removed the regulator and supplied full line pressure. No more heat alarms for that shift!

CC undersized valve

Rather than purchasing and installing an unnecessary system, they were able to get back up and running just by removing the problem upstream. At EXAIR, we want to make sure that you’re getting the most out of our products. Just because you call and inquire about a new purchase doesn’t necessarily mean that you need it. We’re here to help you determine if something is afoul with the current setup and make sure you have all of the knowledge necessary to rectify it.

We’re right in the middle of summer, and boy is it hot out there. If you have panels that are overheating and creating problems for you in your processes, give us a call. With Cabinet Cooler Systems ready to ship same day from stock (with properly sized regulators) you can have it fixed by tomorrow.

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

Back To The Basics: Process Improvement Basics

We understand that it is more important than ever to realize savings within manufacturing processes. EXAIR can reduce compressed air consumption and provide simple ROI in a matter of weeks in MANY cases.

In the hustle and bustle of the daily grind wherever you are, there are certain processes that become muscle memory for you and certain processes that just work and don’t need any attention. Whether it be a login process for your computer network, the number of steps it takes to fill your coffee cup, or the compressed air applications in your facility.

You know what I am talking about, these items begin to get glanced over and often become overlooked. When going through process improvements or troubleshooting, it is easy to overlook processes which are not causing trouble or that have become “acceptable” because they are producing. EXAIR firmly believes compressed air applications are ripe for improvement, and our product lines are built to replace inefficient compressed air products with engineered and efficient solutions.

When evaluating a process for improvement creating a baseline is the necessary start. With this, we can then start to draw a realistic target of where the process needs to be in order to be optimized and document the changes from our starting baseline.

Much like the 6 Steps to Compressed Air Optimization, which starts with measuring compressed air consumption to provide a baseline.  Sometimes, this may require the installation of a Digital Flowmeter, others it may include taking advantage of our Efficiency Lab service for us to get a baseline of what air consumption and other key performance indicators are for your application.

Looking to “go green?” We can help.

Once we have the baseline and a target, we can then begin to design an improvement process. Whether this is implementing better controls for the air, such as pressure regulators, or implementing controllers such as the Electronic Flow Control, it may even be simply installing an engineered solution.  Once an improvement has been implemented we can then go on to the next testing phase to again gather data to see how much air was saved from the baseline.

EXAIR’s Free Efficiency Lab

Once the performance of the new process is determined then we can take the new cost of ownership numbers and give a simple return on investment back to determine what the actual savings by implementing these process improvements have amounted to.

The below example is from a customer who had already improved their static elimination application by using our Super Ion Air Knife instead of a homemade pipe with drilled holes. They further optimized the application with our Electronic Flow Control.

If you would like to talk through methods for process improvement or how we can help you determine these costs, please reach out.

Brian Farno
Application Engineer