Air Entrainment & EXAIR’s Intelligent Compressed Air Products

Air entrainment is a term that we bring up quite often here at EXAIR. It’s this concept that allows many of our products to dramatically reduce compressed air consumption. The energy costs associated with producing compressed air make it an expensive utility for manufacturers. Utilizing engineered compressed air products that will entrain ambient air from the environment allow you to reduce the compressed air consumption without sacrificing force or flow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Products such as the Super Air Knife, Super Air Nozzle, Air Amplifier, and Super Air Wipe all take advantage of “free” air that is entrained into the primary supplied airstream. This air entrainment occurs due to what is known as the Coanda effect. Named after renowned Romanian physicist, Henri Coanda, the Coanda effect is used in the design of airplane wings to produce lift. As air comes across the convex surface on the top, it slows down creating a higher pressure on the underside of the wing. This creates lift and is what allows an airplane to fly.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

This is also the same principle which is allowing us to entrain ambient air. As the compressed air is ejected through a small orifice, a low-pressure area is created that draws in additional air. Our products are engineered to maximize this entrained air, creating greater force and flow without additional compressed air. Super Air Amplifiers and Super Air Nozzles are capable of up to a 25:1 air entrainment ratio, with just 1 part being the supplied air and up to 25 times entrained air for free!! The greatest air entrainment is achieved with the Super Air Knife at an incredible ratio of 40:1!

This air entrainment principle allows you to utilize any of these products efficiently for a wide variety of cooling, drying, cleaning, or general blowoff applications. In addition to reducing your compressed air consumption, replacing inefficient devices with engineered products will also dramatically lower your sound level in the plant. Sound level in some applications can even be reduced down to a point that would eliminate the need for hearing protection with the OSHA maximum allowable exposure limits set at 90 dBA for an 8-hour shift.

If you have inefficient blowoff devices in your facility, give us a call. An Application Engineer will be happy to help you select a product that will “quietly” reduce your compressed air consumption!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Eliminate Static in Tight Spaces with EXAIR’s Gen4 Ion Air Cannon

gen4-iacfillbotl_500xsq
Gen4 IAC removing static from the inside of plastic bottles

The lower relative humidity associated with the cold, dry air of winter results in a significant increase in calls related to static problems. Luckily, EXAIR has a wide-range of Static Eliminators that are designed specifically to address static issues in a variety of industries. Materials such as paper, plastic, or textiles will normally contain an equal number of both positive and negative ions. When subjected to friction, this balance can be disturbed if the atoms gain or lose an electron. This gaining/losing of an electron causes the atom to be electrically imbalanced.

The static charge will then exert a force on nearby charged objects or grounded conductors (including personnel). These issues can also manifest in the form of dust clinging to product, product clinging to itself, rollers, machine beds or frames, materials jamming, and sheet feeding problems. Our Gen4 Static Eliminators have undergone independent laboratory tests to certify that they meet the rigorous safety, health, and environmental standards of the USA, European Union and Canada that are required to attain the CE and UL marks.

One of these such products is the Gen4 Ion Air Cannon. EXAIR’s Gen4 Ion Air Cannon neutralizes static charges at distances up to 15 feet without any moving parts. Utilizing EXAIR’s 2” Super Air Amplifier, the Ion Air Cannon will maximize ionized airflow while minimizing compressed air consumption. The strong, concentrated, quiet, and efficient ionized air is capable of eliminating a 5kV charge in as little as .37 seconds.

iac_plasticsheets800sq
Ion Air Cannon removing static from in between plastic sheets

The compact design saves space and allows it to be mounted in confined areas on walls, machine frames, bench tops, etc. The stand is pre-drilled for easy mounting, and incorporates a swivel adjustment to precisely position the airflow. Some examples of applications that have required the assistance of an Ion Air Cannon include: removing static from motorcycle bodies prior to painting, static removal on PCB boards, and disposable diaper manufacturing.

With a wide variety of Static Eliminating products available from stock, don’t wait for your static problems to subside when humidity levels come back up in the spring. Get yourself a Gen4 Static Eliminator from EXAIR and make sure you’re able to operate, static-free, for the rest of this winter and in the subsequent seasons to come!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Video Blog: Customizing The Display on Your Digital Flowmeter

dfm_noface
EXAIR Digital Flowmeter

EXAIR’s Digital Flowmeters are the easy way for you to monitor your compressed air consumption and waste. They provide a digital readout of the compressed air being used, allowing you to identify costly leaks or inefficient air products throughout the plant. They’re available from stock in sizes ranging from 1/2″-4″ for use with Schedule 40 iron pipe. Additional sizes and pipe materials are available as well, contact the factory for assistance in these applications.

The display on the Digital Flowmeter can be customized to show different values, units of measure, default display setting, resolution, etc. Check out the video below to see which settings are available and how you can adjust the display on your Digital Flowmeter.

 

If you have any questions give us a call, start an online chat from our website or send us an e-mail.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Intelligent Compressed Air: Double-Acting Reciprocating Compressor

Evaluating all of the different types of compressors and which is right for you can seem like a daunting task. Today, I’d like to take some time to talk about the Double-Acting Reciprocating type of air compressor.

double acting compressor
Cut-out of a double-acting reciprocating compressor

Double-Acting Reciprocating compressors are a subset of the larger family of positive displacement compressor types. In positive displacement compressors, air is drawn into a chamber where the volume is then mechanically reduced. The energy used to displace the air volume is converted to an increase in air pressure. Dynamic compressors operate a little differently. They utilize an increase in air velocity to create the change in pressure. Air is accelerated to a high velocity through an impeller. The kinetic energy of the air is converted to an increase in potential (pressure) energy.

The Double-Acting Reciprocating compressor is a close relative to the Single-Acting Reciprocating compressor. In these types of compressors, an “automotive-type” piston driven by a crankshaft provides the compression. In a Double-Acting Reciprocating compressor, air is compressed as the piston moves in each direction. Hence the name, “double-acting”. In a Single-Acting Reciprocating compressor, air is only compressed on each full revolution of the piston. This makes the Double-Acting Reciprocating compressor much more efficient than its brethren.

Double Acting Recip
Double Acting Reciprocating Air Compressor

Double-Acting Reciprocating compressors are also available in much larger sizes. While Single-Acting compressors can be found up to 150HP, generally they’re much less common any larger than 25HP. Whereas a Double-Acting compressor is available from 10HP-1,000HP, making it a better choice for larger plants that require a significantly greater volume of compressed air. While they’re a bit more expensive due to the added mechanisms to produce the double-action compression, this cost is quickly offset by the increase in efficiency. At a performance of 15-16 kW/100 cfm, they’re 32% more efficient than a single-acting reciprocating compressor.

If you’re in the market for a new compressor and are struggling to determine the most suitable compressor, talk with your local compressor sales representative. Once you’re up an running, EXAIR has a wide-range of products that’ll make sure you’re using your compressed air safely and efficiently!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD
Image courtesy of Best Practices for Compressed Air Systems – second edition

 

What Causes Static Electricity?

We’ve all been shocked before. And no, I’m not talking about the feeling we all here in Cincinnati felt when the Cincinnati Bengals finally fired Marvin Lewis… I’m referring to the discharge you’ve likely felt on a cold winter day after walking across a carpeted surface and touching a door knob. This electrostatic discharge is a result of static electricity. To understand how this static electricity is generated, let’s first go back to basic chemistry class and talk about the atomic structure of an atom.

hexagon-2307348_1280.png

An atom consists of three basic particles: protons, neutrons, and electrons. The protons (positively charged) and neutrons (neutral charge) form the nucleus. Outside of the nucleus, electrons (negatively charged) are quickly zipping around in orbits at specific distances from the nucleus. These electrons are bound to the nucleus due to electromagnetic force. Opposite charges attract, since the protons in the nucleus carry a positive charge this acts on the negative charge of the electrons and keeps them in orbit. The closer the electron to the nucleus, the stronger the bond and the more energy required to break that electron from its original orbit.

When an atom gains or loses an electron, it affects the balance that occurs within an atom. If an atom gains an electron, it now has more electrons than protons. This results in a negatively charged atom. The opposite can be said if an atom loses an electron, it now carries a positive charge. This charge imbalance is where static electricity comes from. Both positive and negative charges will remain static until contacted by or in close proximity to a conductive or grounded surface.

The strength of this charge will depend on a few different factors: the types of materials, surface area, environmental conditions, etc. will all play a role in the generation of a static charge. The triboelectric series is a scale, listing various different materials and their tendency to become positive or negative. Those at the far end of the spectrum have an increased propensity to gain or lose an electron, while those in the center are more likely to remain balanced. When two materials on opposite ends of the spectrum come into contact with one another, it poses the greatest risk of generating high levels of static electricity. The chart below shows some common materials and where they fall on the tribolectric series.

triboelectric

When materials carry a static charge, a variety of problems can ensue during manufacturing. These can manifest in the form of painful shocks to operators, materials jamming or tearing, sheet feeding problems, discharges causing imperfections in the material appearance, etc. To remove the charge, we need to introduce static eliminating ions to balance it out. EXAIR’s full line of Static Eliminators create an equal number of both positive and negative ions to saturate the surface of the material and neutralize any charge present.

With a wide range of different solutions all available from stock, EXAIR has the solution to your static problems this winter. Give us a call and we’ll be happy to discuss the application and help to identify the best method to mitigating any static issues in your processes. Take advantage of EXAIR’s current promotion (now through the end of March) and receive a free AC Sensor with your Static Eliminator purchase!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Atom photo courtesy of janjf93 via Pixabay Creative Commons License

Super Ion Air Knife Removes Static from Flour Packaging Process

Static Eliminators
Static Eliminators

Recently I had the pleasure of working on an application with one of our South American distributors, AYRFUL. Their customer is an OEM manufacturer of packaging machines that deals with a variety of different industries in the region. They had a machine in the field operating in Argentina that was posing some issues for a company that processes flour.

Static was building up on the packaging material and was causing flour particles to stick to the outside of the package. If there was any residual flour stuck at the top of the bag after filling, it wouldn’t allow the package to seal properly. This would result in bags of flour that would be improperly sealed, this caused housekeeping issues as some would spill out, but also some of these bags have to be thrown out due to potential contamination.

SIAK web

They reached out to our distributor who was able to go see the application and confirmed that the static was causing the problem with a Model 7905 Static Meter. The web was 27” wide, making our Model 112030 30” Gen4 Super Ion Air Knife a near perfect fit. By placing the Super Ion Air Knife just prior to the filling operation, we were able to remove the static charge on the material and blow off any residual flour that was still stuck to the outside of the packaging. This immediately mitigated the static on the material and allowed for the packages to seal properly, resulting in a production improvement of almost 20%!!

We’re smack in the middle of winter here in the US with drier air causing an uptick in static problems across a wide variety of industrial processes. With a wide range of Static Eliminator solutions available from stock, EXAIR has the ability to solve your problem QUICKLY!

Get in touch with us via phone, chat, or e-mail and an Application Engineer will be happy to assist you in selecting the most suitable Static Eliminator based on the application.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

“Go Green” in 2019 With EXAIR’s Super Air Nozzles & Jets!

If one of your New Year’s resolutions for 2019 is to help improve your impact on the environment, look no further than EXAIR’s Engineered Air Nozzles & Jets. By upgrading your blowoff, cooling, and drying operations to use one of our Super Air Nozzles or Jets you can save as much as 80% of your compressed air usage when compared with an inefficient solution.

open tubes
Example of a manifold of open pipes

An open copper pipe or tube, even if “flattened” as we’ll commonly see, wastes an excessive amount of compressed air. This wasted compressed air can create problems in the facility due to unnecessarily high energy costs and the pressure drop that can be experienced affecting other processes. In addition to simply using too much compressed air, an open pipe or tube will often produce sound levels in excess of 100 dBA. At these sound levels, according to OSHA, permanent hearing damage will occur in just 2 hours of exposure.

OSHA Chart

By simply replacing the open tubes and pipe with an EXAIR Super Air Nozzle, you can quickly reduce air consumption AND reduce the sound level. Sound level isn’t the only thing an OSHA inspector is going to be concerned about regarding an open pipe blowoff, in addition OSHA 1910.242(b) states that a compressed air nozzle used for blowoff or cleaning purposes cannot be dead-ended when using with pressures in excess of 30 psig. I don’t know if you’ve ever tried to use an air gun with 30 psig fed to it, but the effectiveness of it is dramatically reduced. This is why there needs to be a device installed that’ll prevent it from being dead-ended so that you can operate at a higher pressure.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

EXAIR’s Super Air Nozzles are designed with fins that serve two purposes. They help to entrain ambient air from the environment, allowing us to maximize the force and flow from the nozzle but keeping the compressed air consumption minimal. In addition, these fins are what prevents the nozzle openings from being completely blocked off. Using an OSHA compliant compressed air nozzle for all points where a blowoff operation is being performed should be a priority. Each individual infraction will result in a fine if you’re subject to an OSHA inspection. Inspections are typically unannounced, so it’s important to take a look around your shop and make sure you’re using approved products.

sag-osha-compliant
The fins along the outside of the Super Air Nozzle prevent it from being dead-ended

So, go ahead and make 2019 the year of energy savings, increased efficiency, and improving worker safety. You’ll find all of the tools you need in EXAIR’s 32nd edition of the catalog. Click here if you’d like a hard copy sent directly to you! Or, get in touch with us today to find out how you can get saving with an Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD