A Unique Application for the Ultrasonic Leak Detector

Here on the EXAIR blog we post a ton of different applications for our products. We typically see similar applications each day and write about them so that you may identify potential points in your various processes that may benefit from an engineered compressed air solution. Many of these are typical blowoff or cooling applications that we see day in and day out. Sometimes, though, we see some applications that are outside the realm of typical operation. This can sometimes require the manufacturing of a specialized part or just getting a little creative with a stock product.

Our distributor in Argentina recently contacted me about a unique application for an Ultrasonic Leak Detector. The Model 9061 Ultrasonic Leak Detector is a hand-held instrument that allows you to locate costly leaks in a compressed air distribution system. As pressurized air exits a small orifice, an ultrasonic sound that is above human hearing is created. The Ultrasonic Leak Detector is able to pick up on these sound emissions and can convert it to an audible range that is able to be heard by the human ear. Typically, this product is used in conjunction with a leak prevention program to help save money and compressed air by identifying leaks in the distribution system.

ultrasonic_2
Model 9061 ULD detecting a leak

The customer is a manufacturer of plastic bottles used to hold a wide variety of different personal care products. The bottles were molded in two separate pieces, then brought together and sealed. After the two pieces of the bottle were sealed, they had to test each one to ensure that they remained watertight. Their current method involved filling the cavities with water and inspecting for leaks.

While this method was effective, when a leak was present water would get all over the machine and floor and needed to be cleaned up. This to them was considered a nuisance and they began to explore alternative methods of checking the seals on the bottles. They found EXAIR’s Ultrasonic Leak Detector and wondered if they could use it to detect leaks on the bottles if they were to pressurize them with compressed air instead of filling them with water. We’ve handled similar applications in the past, this one here a customer used the ULD to detect leaks from poor welds on the roof of buses. They ordered one for testing and were very pleased with the results. The ULD had no problem detecting leaks in the bottles and allowed them to eliminate the mess and annoyance associated with using water.

2
Operator testing for leaks using the ULD

Just because you can’t find a particular application in our Application Database on the website or here on the blog, doesn’t mean that it can’t be done! With our unconditional 30 day guarantee for all stock products you have plenty of time to test it out in your specific application. If for any reason it won’t work for you, just send it back and we’ll try something else.

If you have a unique application that could be served by an Intelligent Compressed Air Product, give us a call. Trust me when I say we absolutely LOVE tackling a new and exciting challenge with a creative solution!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Dirty Coolant in, Clean Coolant Out – EXAIR’s Chip Trapper Extends Coolant Life

In a machine shop one of the most dreaded tasks is always cleaning out the coolant sumps of the CNC machines. Over time, chips and shavings can make their way up into the coolant lines resulting in a clog. The coolant flow slows down or stops entirely, resulting in premature wear of expensive cutting tools, imperfections in the parts, or unacceptable product finish. When this occurs, if it is even noticed right away, the machine has to be stopped and valuable production time must be spent identifying the location of the clog and removing it.

Another problem, one anyone working around CNC machines can attest to, is the rancid coolant smell that is a result of bacteria building up in the stagnant cutting fluid. Regularly cleaning this oil can reduce this smell, prevent premature tool wear or costly shutdowns, as well as extend the overall life of your coolant.

ctrhlctr_heroi_770x620

There are some machines out there capable of cleaning the oil and removing any chips or shavings, but these tend to be very expensive and not very effective. We tested a few different methods here at EXAIR in our machine shop. As a result of these tests we determined that the best foot forward would be to develop something ourselves. Enter the EXAIR Chip Trapper. Using either a standard or High Lift Reversible Drum Vac to provide the vacuum source, the Chip Trapper is capable of filling or emptying a 55 gallon drum in less than two minutes. It is able to pick up both the liquid coolant as well as any chips or shavings that are suspended in the coolant. The liquid is forced through a filter bag inside of the drum which contains any solid materials while allowing the coolant to filter out into the drum. Switching the knob on the Reversible Drum Vac and the directional flow valve to empty will allow the clean coolant to be pumped back out of the drum and reused.

After implementing the Chip Trapper in our own shop, we were able to increase the life of the coolant by 6x. In addition to the increased coolant life, a process that used to take up to 2 hours per machine now takes less than 10 minutes. The Chip Trapper quickly and easily pays for itself.

The Chip Trapper is available in either 30, 55, and 110 gallon systems. It’ll also come with (2) 5 micron filter bags, other filter bags are also available ranging from 1 micron up to 200 micron filtration. Using a simple detergent, the filter bags can be washed out, cleaned, and reused multiple times. With no motors or impellers to clog or wear out, as well as no electricity requirement or shock hazard, the Chip Trapper comes with our standard 5-year Built to Last Warranty. Do yourself (and your machine operators) a favor and get a Chip Trapper on order today. They’re in stock, ready to ship and start saving you time and money!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

EXAIR Provides Quick Blowoff Solution for Gauge Manufacturer

I was recently contacted by a manufacturer of custom measurement systems. They were working on a design for a system that could measure (2) different sizes of gears with a high degree of accuracy. A robotic arm would pick up the gear off of a conveyor and deposit it onto a gauge for inspection.

IMG_7328
The two gears being measured

During the initial quoting phase of the project they had been a little misled. They were told that the gears would be completely clean and free of debris before being deposited on the conveyor and picked up for inspection.  It turns out this would not be the case. Chips, oil, or debris remaining on the gear would result in false part rejection. With the required completion date looming, they reached out to EXAIR for some help in implementing a solution to clean the gear before inspection.

While blowing off the oil or chips from the gear was the primary concern, having this debris flying around inside the machine could have been problematic as well. We needed to find a way to contain the chips and remove them. In the process, there was a brief moment that the robot arm held the gauge in place just prior to depositing it onto the gauge. It was there that we identified an opportunity to both clean and remove the chips that were blown off the gear. Using a Model 1105 3/8 NPT Super Air Nozzle and Model 9068 Swivel, they were able to precisely position the blowoff to hit across the bottom of the gear where the chips were located. They then 3D printed a shroud to contain the area where the gauge was held and the blowoff would be performed. They designed the shroud with a 1-1/4” outlet to connect directly to our Model 6082 Line Vac. The intake of the Line Vac was installed right at this point and was set to activate as soon as the air nozzles began their cleaning cycle. The chips were blown off of the gears, contained by the shroud, and taken away to a bin underneath the machine by the Line Vac. The crisis was averted!!

This was the first time they had implemented some type of method to clean the part before measuring. In the past, they had lost potential projects due to the inability for them to provide a clean part for measurement. With this newfound method of part cleaning, they’re now able to be a more complete solutions provider to their customers. They’re able to design the part cleaning feature into the process from the start, rather than retroactively as they had to do here.

6082
Model 6082 Aluminum Line Vac

At EXAIR, we understand how problems can crop up during design and cause potential delays in the completion of a project. For this reason, we keep all of our catalog products in stock and ship same day with an order placed by 3:00 pm EST. This customer was local and was able to call in with a problem, determine a solution, and come pick up their order the same day. If you are having difficulty cleaning or drying machined parts, give us a call. EXAIR has the solution, in stock, ready to ship to you immediately.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

EXAIR’s EFC is THE Way to Save Compressed Air

waste

Compressed air is the most expensive utility for most industrial facilities. The energy costs associated with the generation of compressed air can be very high. Because of this, EXAIR manufactures a wide range of products geared towards reducing your overall compressed air consumption.

The best way to save compressed air is to simply turn it off when it’s not being used. This might seem pretty simple, but there may be processes in your facility where this couldn’t be achieved by just turning a valve. In applications where product is traveling along a conveyor, and must be dried, cooled, or blown off, there is likely some spacing in between the parts. It isn’t necessary to keep the blowoff running constantly if there’s periods of intermittent spacing. To help reduce the overall load on the air compressor, implementing a solution to shut the air off in between each part can have a dramatic impact. EXAIR’s Electronic Flow Control, or EFC, is designed to improve efficiency by reducing overall compressed air usage. It utilizes a photoelectric sensor that detects when the part is present. When it’s not, it triggers a solenoid valve to close and shut off the compressed air supply.

efcapp

 

Let’s take a look at an example that shows just how much air (and $$) an EFC can save. We had a manufacturer of car bumpers that was using a Model 112060 60” Super Ion Air Knife supplied at 40 PSIG to remove dust prior to a painting operation. The bumpers were moving at about 10’/minute and had 1’ of spacing in between each part. The bumpers are only under the blowoff for 10 seconds, while 6 seconds passed with no part present. With a (3) shift operation, this translates to 1,440 minutes of nonstop compressed air usage per day.

A 60” Super Ion Air Knife will consume 102 scfm at 40 PSIG. Their current method was using a total of 146,880 SCFM.

102 SCFM x 1,440 minutes = 146,880 SCF

With the EFC installed, the air was shut off for 6 seconds reducing the airflow by 37.5%. With the EFC installed, the compressed air consumption per day was reduced to 91,800 SCF.

146,880 SCF x .625 = 91,800 SCF

As a general rule of thumb, compressed air costs $0.25/1,000 SCF. By saving 55,080 SCF per day, this manufacturer was able to save $13.77 per day. Since this was a 24 hour/day shift running 7 day/week, total savings for the year came in at $5,012.28. This easily recoups the costs of the EFC and then begins to pay you in less than 6 months.

55,080 SCF x ($0.25/1,000 SCF) = $13.77

$13.77 x 7 days/week x 52 weeks/year = $5,012.28

The EFC models available from stock can accommodate flows up to 350 SCFM. For applications requiring more compressed air, EFCs with dual solenoids are also available. If you have an application in one or more of your processes where intermittent compressed air use could help save you money, give us a call. We’d be happy to take a look at the application and help determine just how quickly the EFC could start paying YOU!

Tyler Daniel
Application Engineer
E-mal : TylerDaniel@Exair.com
Twitter: @EXAIR_TD

Intelligent Compressed Air: Venturi Effect

The venturi effect is named after renowned Italian physicist, Giovanni Battista Venturi. Venturi was a professor at the University of Modena and an avid historian of science. He was the first to emphasize Leonardo da Vinci as a scientist rather than just an artist. In 1797, he published a study on the flow of water through short cylindrical tubes. It wasn’t until 1888 that Venturi’s design was applied to something practical when a man named Clemens Herschel received a patent for the first commercial venturi tube. The original purpose of the venturi tube was to measure the amount of water used in individual water mills and is still used to this day as a means of measuring fluid flows.

The venturi effect  is a principle in fluid dynamics that states that a fluid’s velocity must increase as it passes through a constricted pipe. As this occurs, the velocity increases while the static pressure decreases. The pressure drop that accompanies the increase in velocity is fundamental to the laws of physics. This is known as Bernoulli’s principle. Below is an illustration of how the venturi effect works inside of a constricted tube.

venturi

In everyday life, the venturi principle can be found inside of many small engines such as lawn mowers, gas powered scooters, motorcycles and older style automobiles. Inside the carburetor, there is a small tube through which filtered air flows from the intake. Inside of this tube is a short narrowing. When the air is forced to constrict, its velocity increases and creates a vacuum. This vacuum draws in fuel and mixes with the air stream causing it to atomize.  As the throttle valve is opened further, more fuel is forced into the engine. This increases the RPM and creates more power.

carburetor-3077216_1920

This principle is also applied to EXAIR’s line of E-Vac products to create vacuum. The .gif below illustrates how an In-Line E-vac works. (1) Compressed air flows through the inlet (2) and is directed through a nozzle, constricting the flow of air. (3) As the airstream exhausts, it expands causing a decrease in pressure and an increase in velocity prior to passing through the venturi. (4) A vacuum inlet tangential to the primary airflow is located at the suction point between the orifice and the venturi. (5) The airflow that is drawn through the vacuum inlet mixes with the primary airstream, then exhausts on the opposite end.

inlineworks

The venturi effect is used in a variety of other EXAIR products used for cooling, drying and cleaning, in addition to the vacuum generators. If you have a process in your facility that may benefit from an Intelligent Compressed Air solution, give us a call. We’d be happy to discuss your application and implement a solution to both reduce your compressed air costs and improve worker safety.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Image courtesy of gm_design via Creative Commons License

Intelligent Compressed Air: Utilization of the Coanda Effect

Henri Coanda was a Romanian aeronautical engineer most known for his work developing what is today known as the Coanda effect. The Coanda effect is the propensity of a fluid to adhere to the walls of a curved surface. A moving stream of fluid will follow the curvature of the surface rather than continuing to travel in a straight line.  This effect is used in the design of an airplane wing to produce lift. The top of the wing is curved whereas the bottom of the wing remains straight. As the air comes across the wing, it adheres to the curved surface, causing it to slow down and create a higher pressure on the underside of the wing. This  is referred to as lift and is what allows an airplane to fly.

2695876474_d8e82d5ee4_z

The Coanda effect is also the driving force behind many of EXAIR’s Intelligent Compressed Air Products. Throughout the catalog you’ll see us talking about air amplification ratios. EXAIR products are designed to take advantage of this phenomenon and entrain ambient air into the primary air stream. Compressed air is ejected through the small orifices creating air motion in their surroundings. Using just a small amount of compressed air as the power source, Super Air Knives, Air Nozzles, and Air Amplifiers all draw in “free” ambient air amplifying both the force and the volume of airflow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Super Air Knives provide the greatest amount of air amplification at a rate of 40:1, one part being the compressed air supply and 40 parts ambient air from the environment. The design of the Super Air Knife allows air to be entrained at the top and bottom of the knife, maximizing the overall volume of air. Super Air Nozzles and Super Air Amplifiers also use this effect to provide air amplification ratios of up to 25:1, depending on the model.

HowItWorks
Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

The patented shim design of the Super Air Amplifier allows it to pull in dramatic amounts of free surrounding air while keeping sound levels as low as 69 dBA at 80 psig! The compressed air adheres to the Coanda profile of the plug and is directed at a high velocity through a ring-shaped nozzle. It adheres to the inside of the plug and is directed towards the outlet, inducing a high volume of surrounding air into the primary air stream. Take a look at this video below that demonstrates the air entrainment of a Super Air Amplifier with dry ice:

Utilizing the Coanda effect allows for massive compressed air savings. If you would like to discuss further how this effect is applied to our Super Air Knives, Air Amplifiers, and Air Nozzles give us a call. We’d be happy to help you replace an inefficient solution with an Engineered Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

EXAIR’s E-Vac Vacuum Generators & Accessories

vcacc

EXAIR’s In-Line and Adjustable E-Vacs are powerful compressed air powered vacuum generators. They’re a low-cost way to create a vacuum for a variety of different applications: pick and place, clamping, chucking, lifting, surface mounting, and vacuum forming are just some of the possibilities. Both the In-Line and Adjustable E-Vacs are available in a variety of different sizes and flows and can accommodate a wide range of applications.

In addition to the vacuum generators themselves, EXAIR offers a variety of different accessories to help you build a complete system. To minimize the sound level and ensure you’re adhering to OSHA 29CFR 1910.95, we have Standard Mufflers as well as Straight Through Mufflers. The Straight Through Mufflers offer the best level of sound reduction, up to 26 dBA!!

890001
Straight through mufflers are available from 1/4″-1″ MNPS

With no moving parts to wear out, EXAIR’s E-Vacs are virtually maintenance free when supplied with clean, dry compressed air. To maintain proper operation of your E-Vac, installation of an Automatic Drain Filter to remove any particulate and moisture from the air supply is necessary. In addition, oil removal filters are also available if your compressed air supply contains any oil as is common in many compressed air systems.

For pick and place or lifting applications, vacuum cups will be necessary. With a wide variety of different vacuum cups available: small round, large round, oval, and bellows, we can accommodate nearly any size or shape material. For heavier materials, round cups with cleats provide rigidity and ensure that the load remains stable. For applications on textured or uneven surfaces, bellows style cups have convolutions that allow for the cup to quickly decompress when it touches the surface of an uneven part or material.

vacupfam
EXAIR’s family of vacuum cups

The vacuum port of the E-Vac has an NPT thread, vacuum cups can be installed directly in this inlet. For applications where the vacuum cup(s) are remotely located, we offer polyurethane vacuum tubing as well as a variety of different fittings to connect them. Both 1/4” and 3/8” O.D. sizes are available in 10’ lengths up to 50’. Simply indicate the model number of the tubing and add the length with a “-“ at the suffix. For example, a 900795-30 would be 30′ of 1/4″ O.D. tubing. In addition to fittings and tubing, vacuum check valves are also available. These can be beneficial if there is potential for fluctuations in the compressed air pressure or supply. In the event that there is a significant drop in pressure or loss of compressed air supply, the check valve will ensure that the load remains held.

push_lock_t
Push-in Swivel Tee Connector

With all of the different options making a selection can seem like a daunting task. A highly trained EXAIR Application Engineer is ready and available to help you!! With just a few quick details, we can help advise you about the proper size E-Vac generator for your application as well as recommend the most suitable cup and accessories. Give us a call, shoot us an e-mail, or reach out to us online via chat and we’ll make sure you have a complete vacuum solution ASAP with all parts ready to ship from stock!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@Exair.com
Twitter: @EXAIR_TD