A Brief History of the Air Compressor

Essentially compressed air technology was first used with the knowledge of how to start a fire.  Humans learned that to get the fire started, blowing helped the process, healthy human lungs can generate approximately .02 to .08 bar or .3 to 1.2 PSI.

At the beginning of the metallurgical age (approximately 3000 B.C.) a higher volume of air than what human lungs could produce was required to the reach the temperatures required to melt and form metals such as copper, tin, lead, etc.  This need lead to the hand-operated bellows, the first mechanical air compressor.  Approximately 1500 years later the more efficient foot powered bellows was developed.


The foot powered bellows was followed by water powered bellows and was the mainstay for more than 2000 years.  However as blast furnaces came into being the need for compressed air increased.  This lead John Smeaton in 1762 to design a water wheel that powered a blowing cylinder and this began to replace bellows.  In 1776 John Wilkinson developed an efficient blasting machine and this was the beginning for mechanically powered air compressors.

As time progressed the idea of transmitting energy via compressed air became acceptable.  This idea was demonstrated around 1800 when the newly invented pneumatic rock drill was used to tunnel 80 miles under Mt. Cenis to connect Italy & France by rail.  This was an extraordinary feat for the time and garnered global interest.  This event perpetuated great interest into pneumatic powered devices  and brought us the air powered motors, clocks and even beer dispensers!

While compressed air is capable of transmitting energy long distances and performing tremendous work it also referred to as the 4th utility in industrial plants due to its cost.  We at EXAIR have been promoting compressed air conservation and safety using highly engineered products for 35 years!  Our products wring the maximum of energy out of every SCFM fed to them by using air entrainment and the Coanda effect.  Not only are we conserving your compressed air we offer products that are quiet and can’t be dead ended which prevents air embolisms.

If you are interested in discussing conserving compressed air and/or compressed air safety, I would enjoy hearing from you.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Super Air Knife Replaces a Blower-type Air Knife and Saves Money Annually

Sheet washing system

A sheet metal company made thin stainless steel sheets in their process.   Before the sheets were rolled up, it went through a washing system.  Two blower-type air knives were mounted after the wash cycle to remove the residual water from the surface.  They purchased the blower-style air knives under the belief that they would save money by not using compressed air.  They found out quickly that it was not a true statement especially when it comes to the total cost of ownership.

With the dirty environment at their facility, the inlet filter on the blower was getting plugged.  The blower motor would heat up from the filter being restricted.  After eight months of service, the blower motor failed due to excessive heat.  The replacement was very costly, and it created a production stoppage for an entire day.  The manufacturer of the blower-type air knife recommended that the filter should be changed every month instead of quarterly.  This recommendation increased the monthly budget for the blower system, but they did not want to replace the blower motor again.  Instead of a quarterly stop in production for maintenance, the washing system had to be stopped every month for filter change-out.   They decided to contact EXAIR to see if their concept of “saving money” with the blower-type air knife was valid.

To better explain the concept, I divided the comparisons into different categories explaining the details between the Super Air Knife and the blower system.

  1. Initial Cost:
    • Blower System – They are an expensive set up when you have to include a blower, ducting, and a knife. To have any flexibility, a control panel with a VFD will be needed.
    • Super Air Knife – It is a fraction of the cost. With their system above, we were roughly 1/4 the cost.  A capital expense would not be required for ordering two Super Air Knives to remove the water from the stainless steel sheets.
  1. Maintenance:
    • Blower System – The intake filter had to be changed every month, and the customer estimated a cost of $150.00 each. The motor and belt also had to be checked quarterly as a preventive maintenance.  Being that the blower motor is a mechanical device, the bearings and belts will wear and have to be replaced.  Without proper maintenance, things can break prematurely.  This customer had to already replace the motor in their system.
    • Super Air Knife – They do not have any moving parts to wear out, and they are not affected by the dirty environment. Only compressed air is needed to operate.  The maintenance requirement is to change the compressed air filter once a year.  The annual price for the replacement filter is less than $35.00.
  2. Compressed air usage:
    • Blower System – This device does not require any compressed air to operate, but it does use an electric motor. For this customer, they had a 7.5KW blower motor.  With the inherent designs of blower-type air knives, they have reduced blowing forces and turbulent air flows.  This combination required maximum power output on the 7.5KW blower motor.
    • Super Air Knife –With their unique design, it has one of the highest efficiencies in the market place. It can entrain 40 parts of ambient “free” air with every 1 part of compressed air.  With laminar flow and the power of compressed air, the Super Air Knives can be used at a much lower air pressure.  To compare with the electric blower motor above, the Super Air Knives only required 11KW of compressor power to operate.
  3. Noise:
    • Blower System – With the turbulent air flow, the blower units are very loud. It can have a sound level near 93 dBA.  If operators are working near the system, they would require PPE for hearing.  The cost for proper hearing equipment and the training for the operators will add more cost with using blower systems.
    • Super Air Knife – These units are very quiet. Even at an elevated pressure, the sound level is only 72 dBA at 100 PSIG.  This level is below the maximum noise exposure for hearing safety as marked in OSHA 29CFR 1910.95(a).


I tabulated the annual cost comparison and shared it with the customer to better explain the total cost of ownership.  After reviewing the information, they decided to try two pieces of the model 110230 Super Air Knife Kits.  When they replaced the blower-type air knives, the customer did share some additional information.  First, they were amazed at the ease of installation.  The blower-type air knives had to be electrically wired; floor space was sacrificed for the blower; the connection hoses were large and bulky; and the mounting was cumbersome.  The customer also noticed the amount of power that was created by the Super Air Knives.  They were able to increase the feed rates of the stainless steel sheets if they wanted and still keep the surface dry.  This gave them flexibility in their production system.  And of course, the maintenance time and cost were practically eliminated.  Compressed air is expensive, but if you use EXAIR products, you can use the compressed air very efficiently.  As noticed in the tabulation above, the total cost of ownership is very expensive for the blower-type air knives as compared to the Super Air Knives.  You can contact an Application Engineer at EXAIR if you want to discuss further the benefits of using the Super Air Knives.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Fluidics, Boundary Layers, And Engineered Compressed Air Products

Fluidics is an interesting discipline of physics.  Air, in particular, can be made to behave quite peculiarly by flowing it across a solid surface.  Consider the EXAIR Standard and Full Flow Air Knives:

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces serve to optimize the entrainment of air (4) from the surrounding environment.

If you’ve ever used a leaf blower, or rolled down the car window while traveling at highway speed, you’re familiar with the power of a high velocity air flow.  Now consider that the Coanda effect can cause such a drastic redirection of this kind of air flow, and that’s a prime example of just how interesting the science of fluidics can be.

EXAIR Air Amplifiers, Air Wipes, and Super Air Nozzles also employ the Coanda effect to entrain air, and the Super Air Knife employs similar precision engineered surfaces to optimize entrainment, resulting in a 40:1 amplification ratio:

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

As fascinating as all that is, the entrainment of air that these products employ contributes to another principle of fluidics: the creation of a boundary layer.  In addition to the Coanda effect causing the fluid to follow the path of the surface it’s flowing past, the flow is also affected in direct proportion to its velocity, and inversely by its viscosity, in the formation of a boundary layer.

High velocity, low viscosity fluids (like air) are prone to develop a more laminar boundary layer, as depicted on the left.

This laminar, lower velocity boundary layer travels with the primary air stream as it discharges from the EXAIR products shown above.  In addition to amplifying the total developed flow, it also serves to attenuate the sound level of the higher velocity primary air stream.  This makes EXAIR Intelligent Compressed Air Products not only as efficient as possible in regard to their use of compressed air, but as quiet as possible as well.

If you’d like to find out more about how the science behind our products can improve your air consumption, give me a call.

The Case Is Mounting For Stay Set Hoses

So, you’ve selected a quiet, efficient, and safe EXAIR Super Air Nozzle for your blow off application – good call! – and now you’re thinking about how to install it.  Sometimes, it’s as simple as replacing whatever you’re using right now:

EXAIR Intelligent Compressed Air Products have common NPT (or BSP) connections, making for easy replacement of most any existing threaded device.

Or maybe you’re using an open end blow off…in which case, you’re just an adapter away:

EXAIR Super Air Nozzles are quick and easy to install on existing copper tube, via a simple compression fitting.

Perhaps, though, it’s a new installation, or the existing supply lines aren’t suitable for one reason or another.  In those cases, we’ve still got you covered…consider the EXAIR Stay Set Hose:

Precise aiming and location is a breeze with EXAIR Stay Set Hoses.

Available in a variety of lengths from 6″ to 36″, they’re positionable, and re-positionable with a simple bending action.  They won’t kink or easily fatigue like copper tubing.  The supply end is 1/4  MNPT, and you have your choice of 1/4 MNPT or 1/8 FNPT on the other end, depending on which Super Air Nozzle, Air Jet you need to use it with.

We also offer Blow Off Systems, which are a combination of a specific Air Nozzle (or Air Jet,) fitted to a Stay Set Hose:

Model 1126-9262, for example, is a Model 1126 1″ Flat Super Air Nozzle with a 9262 Stay Set Hose.

For added convenience and ease of installation, these products can also come with a Magnetic Base:

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

Stay Set Hoses are also available with a variety of our Soft Grip Safety Air Guns, and they make the GEN4 Stay Set Ion Air Jet one of our most popular Static Eliminator products.  They’ve even been successfully applied with small Air Amplifiers and Air Knives…with certain limitations (spoiler alert: trying this with a 108″ Super Air Knife is going to be a definite “no.”)

Model 110003 3″ Aluminum Super Air Knife with 6″ Stay Set Hose & Magnetic Base.

From the beginning in 1983, EXAIR’s focus has been on being easy to do business with, and that goes from our friendly customer service to our expert technical support to our 99.9% on-time shipments (22 years and running) to designing our engineered products and value-added accessories with efficiency, safety, and ease of installation in mind.  If you want to find out more, give me a call.

Video Blog: EXAIR’s Universal Air Knife Mounting System

Using EXAIRS Universal Air Knife Mounting System greatly ease’s the installation of all Air Knives (Except PVDF).  It will save you the time and expense of designing and fabricating your own mounting system which will maximize your uptime and keep your staff focused on key plant tasks!

Please note the table below that highlights the recommended number of the Universal Air Knife Mounting System to use for the various length of Air Knives.

Length Of Air Knife Number of UAKMS
3″ – 18″ 1
24″ – 54″ 2
60″ 3
72″ – 95″ 4
96″ – 108″ 5

If you would like to discuss Universal Air Knife Mounting System, Air Knives or any EXAIR compressed air product, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook


Intelligent Compressed Air: Utilization of the Coanda Effect

Henri Coanda was a Romanian aeronautical engineer most known for his work developing what is today known as the Coanda effect. The Coanda effect is the propensity of a fluid to adhere to the walls of a curved surface. A moving stream of fluid will follow the curvature of the surface rather than continuing to travel in a straight line.  This effect is used in the design of an airplane wing to produce lift. The top of the wing is curved whereas the bottom of the wing remains straight. As the air comes across the wing, it adheres to the curved surface, causing it to slow down and create a higher pressure on the underside of the wing. This  is referred to as lift and is what allows an airplane to fly.


The Coanda effect is also the driving force behind many of EXAIR’s Intelligent Compressed Air Products. Throughout the catalog you’ll see us talking about air amplification ratios. EXAIR products are designed to take advantage of this phenomenon and entrain ambient air into the primary air stream. Compressed air is ejected through the small orifices creating air motion in their surroundings. Using just a small amount of compressed air as the power source, Super Air Knives, Air Nozzles, and Air Amplifiers all draw in “free” ambient air amplifying both the force and the volume of airflow.

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Super Air Knives provide the greatest amount of air amplification at a rate of 40:1, one part being the compressed air supply and 40 parts ambient air from the environment. The design of the Super Air Knife allows air to be entrained at the top and bottom of the knife, maximizing the overall volume of air. Super Air Nozzles and Super Air Amplifiers also use this effect to provide air amplification ratios of up to 25:1, depending on the model.

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

The patented shim design of the Super Air Amplifier allows it to pull in dramatic amounts of free surrounding air while keeping sound levels as low as 69 dBA at 80 psig! The compressed air adheres to the Coanda profile of the plug and is directed at a high velocity through a ring-shaped nozzle. It adheres to the inside of the plug and is directed towards the outlet, inducing a high volume of surrounding air into the primary air stream. Take a look at this video below that demonstrates the air entrainment of a Super Air Amplifier with dry ice:

Utilizing the Coanda effect allows for massive compressed air savings. If you would like to discuss further how this effect is applied to our Super Air Knives, Air Amplifiers, and Air Nozzles give us a call. We’d be happy to help you replace an inefficient solution with an Engineered Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Six Steps To Optimizing Your Compressed Air System – Step 1: Measure

“To measure is to know – if you cannot measure it, you cannot improve it.”
-Lord Kelvin, mathematical physicist, engineer,and pioneer in the field of thermodynamics.

This is true of most anything. If you want to lose weight, you’re going to need a good scale. If you want to improve your time in the 100 yard dash, you’re going to need a good stopwatch. And if you want to decrease compressed air consumption, you’ll need a good flowmeter. In fact, this is the first of six steps that we can use to help you optimize your compressed air system.

Six Steps To Optimizing Your Compressed Air System

There are various methods of measuring fluid flow, but the most popular for compressed air is thermal mass air flow.  This has the distinct advantage of accurate and instantaneous measurement of MASS flow rate…which is important, because measuring VOLUMETRIC flow rate would need to be corrected for pressure in order to determine the true compressed air consumption.  My colleague John Ball explains this in detail in a most excellent blog on Actual (volume) Vs. Standard (mass) Flows.

So, now we know how to measure the mass flow rate.  Now, what do we do with it?  Well, as in the weight loss and sprint time improvements mentioned earlier, you have to know what kind of shape you’re in right now to know how far you are from where you want to be.  Stepping on a scale, timing your run, or measuring your plant’s air flow right now is your “before” data, which represents Step One.  The next Five Steps are how you get to where you want to be (for compressed air optimization, that is – there may be a different amount of steps towards your fitness/athletic goals.)  So, compressed air-wise, EXAIR offers the following solutions for Step One:

Digital Flowmeter with wireless capability.  This is our latest offering, and it doesn’t get any simpler than this.  Imagine having a flowmeter installed in your compressed air system, and having its readings continually supplied to your computer.  You can record, analyze, manipulate, and share the data with ease.

Monitor your compressed air flow wirelessly over a ZigBee mesh network.

Digital Flowmeter with USB Data Logger.  We’ve been offering these, with great success, for almost seven years now.  The Data Logger plugs into the Digital Flowmeter and, depending on how you set it up, records the flow rate from once a second (for about nine hours of data) up to once every 12 hours (for over two years worth.)  Pull it from your Digital Flowmeter whenever you want to download the data to your computer, where you can view & save it in the software we supply, or export it directly into Microsoft Excel.

From the Digital Flowmeter, to your computer, to your screen, the USB Data Logger shows how much air you’re using…and when you’re using it!

Summing Remote Display.  This connects directly to the Digital Flowmeter and can be installed up to 50 feet away.  At the push of a button, you can change the reading from actual current air consumption to usage for the last 24 hours, or total cumulative usage.  It’s powered directly from the Digital Flowmeter, so you don’t even need an electrical outlet nearby.

Monitor compressed air consumption from a convenient location, as well as last 24 hours usage and cumulative usage.

Digital Flowmeter.  As a stand-alone product, it’ll show you actual current air consumption, and the display can also be manipulated to show daily or cumulative usage. It has milliamp & pulse outputs, as well as a Serial Communication option, if you can work with any of those to get your data where you want it.

With any of the above options, or stand-alone, EXAIR’s Digital Flowmeter is your best option for Step One to optimize your compressed air system.

Stay tuned for more information on the other five steps.  If you just can’t wait, though, you can always give me a call.  I can talk about compressed air efficiency all day long, and sometimes, I do!