Vac-u-Gun: Low Cost Vacuum, Blowoff and Transfer

What is the Vac-u-Gun?  It is a low cost solution to many types of cleaning operations within an industrial setting.  The Vac-u-Gun is a vacuum gun, a blow gun, and a transfer tool, all-in-one! It is lightweight, easy to use, has durable die cast construction, and best of all, no moving parts to wear out. Simply hook up to a compressed air hose, and get to work.

Vac u Gun Hose

The Vac-u-Gun contains a nozzle insert that dictates the direction of air flow and operation. By simply unscrewing the the cap, reversing the orientation of the nozzle insert, and re-installing the cap, the gun is changed from a vacuum device to a blowoff device, and vice-versa.

vac u gun orientation
Reverse the direction of the nozzle insert to change from vacuum to blowoff

The Vac-u-Gun can be used in three modes- Vacuum, Transfer and Blowoff-

Vacuum Mode – Vacuum shavings, absorbents, sawdust, or spills into a reusable bag, or into a receptacle via the vacuum hose. Why blow it off and the have to sweep it up later?

Transfer Mode – Transfer small parts, pellets, or trim over long distances, using the smooth bore vacuum hose.

Blowoff Mode – Blow chips, water, coolant, or scrap away from the work area. The large 1-1/4″ diameter outlet directs the air over a larger area in less time. The Vac-u-Gun uses less compressed air than an ordinary blow gun.

Vac-U-Gun Specifications

There are many advantages to a Vac-u-Gun, and some are:

Low cost, no moving parts/maintenance free, durable die cast construction, easy to switch form vacuum to blow mode, safe – no electricity, meets OSHA pressure requirements, lightweight and portable, versatile, and quiet.

Versatile!  In just seconds, the Vac-u-Gun can transform from a powerful, handheld vacuum tool into an efficient blow gun or transfer tool for lightweight materials. Each Vac-u-Gun System comes with the attachments needed to suit numerous industrial applications.

Three (3) Vac-u-Gun System options are available and shown below-

Vac-u-Gun System Options

All of the Systems include the Vac-u-Gun, brush, crevice tool, skimmer tool and (2) extension wands.

The Model 6192 Collection System also includes the reusable bag with clamp for debris collection.

The Model 6292 Transfer System also includes the vacuum hose, for transferring the debris to a collection point.

The Model 6392 All Purpose System also includes both the reusable bag and clamp and the transfer hose, providing the most versatility of all.

To view a video that shows the Model 6392 All Purpose System, and demonstrates how it works, please view the video below-

 

If you have questions about the Vac-u-Gun or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Super and Adjustable Type Air Amplifiers

The EXAIR Air Amplifiers are a powerful, efficient and quiet air mover, whose power can be harnessed for blowoff, cooling and ventilation applications. Using a small amount of compressed air, air amplifiers pull in large amounts of surrounding air to produce a high volume, high velocity outlet flow.  Quiet and efficient, output flows with amplification ratios of up to 25 times are possible. There are two types, the Super Air Amplifier and the Adjustable Air Amplifier.

The Super Air Amplifier, with sizes ranging from 3/4″ to 8″, has a patented design (patent #5402938) that uses a special shim to maintain critical position of the components parts. It is through this critical gap setting that a precise amount of compressed air is passed at exact intervals controlled by the shim toward the center of the of the Super Air Amplifier.  The jets of air create a high velocity flow across the entire cross sectional area, which in turn pulls in large amounts surrounding air, resulting in the amplified outlet flow.  Because the outlet flow remains balanced and minimizes wind shear, sound levels are typically three times lower than other types of air movers. The shims are available in thicknesses of 0.003″ (supplied as standard), 0.006″ and 0.009″, and changing to a larger shim will increase the force and flow of the outlet air. The 8″ Super Air Amplifier is supplied with a 0.009″ shim, with a 0.015″ shim available.

2″ Super Air Amplifier and Patented Shim Design

For high temperature applications (up to 700°F/374°C) a special 1-1/4″ High Temperature Air Amplifier is available, with performance equal to the 1-1/4″ Super Air Amplifier. Its surfaces are protected from heat stress by a mil-spec coating process. The High Temperature Air Amplifier is highly effective at pushing large amounts of hot air to areas that typically remain cool.

The Adjustable Air Amplifier, with sizes ranging from 3/4″ to 4″, does not use a shim, and has an infinitely adjustable air gap, which regulates the air consumption and outlet flow from a light breeze to a powerful blast. A highly effective air mover, it can be tailored to meet the exact air flow and force of your specific application. They are available in aluminum and in stainless steel (Type 303) for food service, higher temperatures (400°F/204°C) and corrosive environments.

6042.jpg
2″ Adjustable Air Amplifier, in Aluminum or Stainless Steel

Force and flow of the Adjustable Air Amplifier is changed by loosening the knurled lock ring and turning the exhaust end to open or close the gap.  Once the desired force and flow is achieved, the knurled ring can be tightened to lock the device at the current setting. Typically, an air gap of 0.002″ to 0.004″ provides the required performance.

The table below summarizes the key features of the Super Air Amplifier and Adjustable Air Amplifier.  Please contact an Application Engineer if you need assistance in making a selection.

Air Amp Selection Chart

Note that EXAIR can manufacture special Air Amplifiers to your specification including special flanged mounting style or with a PTFE plug to avoid sticky material build up.

To discuss your application and how a Super or Adjustable Air Amplifier or any EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Super Air Amplifiers Compared to Fans

Super Air Amplifier

EXAIR Super Air Amplifiers and fans are designed to move air.  Fans use motors and blades to push the air toward the target.  There are two types, centrifugal fans and axial fans.  Centrifugal fans are also called blowers or “squirrel” cages.  The air enters into the side of the fan and is redirected 90 degrees to the outlet.  The axial fans are box fans, ceiling fans, and industrial fans.  The motor and spindle are attached to blades.  The air enters from directly behind the fan, and the blades “slap” the air forward to the target. The EXAIR Super Air Amplifiers does not have any blades or motors to push the air.  They use a Coanda profile with a patented shim to create a low pressure to draw in the air.   (You can read more about it here: Intelligent Compressed Air: Utilization of the Coanda Effect.)  I will expand a bit more in this blog about how each one performs in moving ambient air.

The reason to move air can vary by application from cooling, drying, cleaning, and conveying.  The more air that can be moved, the better the performance for each of these functions.  With the Super Air Amplifiers and fans, these products can move the air, but what affects air flow?  Velocity, turbulence, and static or back pressure.  As we look at each one, we can start to see the effectiveness within each application.

Super Air Amplifier – flow region

Velocity is air flow per unit area.  This is the speed at which the air is traveling.  Some fan designs can affect the velocity, like the motor and spindle in the center of the axial fan.  Some of the area is removed from the middle of the flow region.  So, the velocity is very weak in the center.  (Reference diagram below).  With the centrifugal fan, the air velocity has to be redirected and pushed out the exhaust.  The velocity profile is very disoriented and will work against itself within the flow region.  If we look at the EXAIR Super Air Amplifier, the center is open as shown above.  There are no obstructions.  Since we are drawing in the ambient air, the velocity profile is laminar meaning that the flow is even across the entire flow region.  Laminar flow is optimum for a uniform force and effective blowing.

Axial Fan velocity profile

Turbulence is the “action” of the air flow.  If the turbulence is high, the air flow pattern is interrupted and chaotic.  It causes the velocity of the air to decrease quickly.  By the time the air reaches the target, it has low energy and force.  As a result of turbulence, noise levels can become very loud.  With a centrifugal fan or blower, the air is forced to move at a right angle and pushed out through an exhaust port.  This creates a very turbulent air flow.  The axial fan has less turbulence than its counterpart, but the blades still “slap” the air to push it forward.  This disruption in the flow pattern for both fans create turbulence and disarray.  The EXAIR Super Air Amplifier draws the air into the device to generate very little turbulence on the exhaust end.  The flow pattern is consistent, working together in the same direction.  This will allow for more air to reach the target.

Static pressure is important as it relates to the amount of resistance or blockage.  When blowing air through or around products, this resistance will determine the effectiveness and distance for efficient blowing.  To find the maximum resistance, this would be considered at the dead-end pressure.  When the exhaust is totally blocked, the maximum pressure is created.  In an application, the higher the resistance, the less air that can flow through and around to be utilized.  With fans, it is dependent on the blade types, motor size, and RPM.  Since the EXAIR Super Air Amplifiers do not have motors or blades, it is determined by the inlet air pressure.  So, the higher amount of static pressure, the more resistance that the blowing device can handle.

In comparison, I created a table below to show a model 120024 4” Super Air Amplifier against two different types of fans.  The first thing that you notice is the small package area of the model 120024 as compared to the fans that create similar air flows.  The centrifugal fan requires an addition electrical motor which increases the cost and generates a larger footprint.  The reason for the smaller flow area is the laminar air flow that the Super Air Amplifiers generate.  As stated above, the velocity pattern works together in the same direction.  So, a smaller profile can produce a lot more air movement.  In addition, this helps to create a larger static pressure.  Also referenced above, it will move the air much further to do more work.  With high turbulence, the air movement works against itself causing inefficiencies and louder noise levels.

Specification Table

In physics, it is much easier to pull than it is to push.  The same goes for moving air.  Fans are designed to “push” the air and the Super Air Amplifiers are designed to “pull” the air.  This method of pulling makes it simple to create a laminar flow in a small package which is more efficient, effective, and quiet.  Being powered by compressed air, there is no need for electric motors or blades to “push” the air ineffectively.  With the patented shims inside the Super Air Amplifiers, they maximize the amplification by “pulling” in large amounts of ambient air while using less compressed air.  If you want to move away from blower systems or axial fan systems to get better cooling, drying, cleaning, and conveying; you can contact an Application Engineer for more details.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Super Air Amplifier Increases Airflow In Vaccum Hood For Fume Extraction

A couple days ago I  took a call from an extrusion company who was looking to increase the airflow in their plating operation. They manufacture several different shapes and styles of aluminum extrusions by the way of 8 large extrusion presses. On one of the presses they make a specialty line of products that are sent to a finishing operation to be anodized.

Above the anodizing process tanks they use a vacuum hood to capture fumes and send them to a scrubber system so the air can be cleaned before being exhausted. They were starting to see an increase in the level of VOC (Volatile Organic Compound) gases in the area and, after some internal testing, determined the existing system wasn’t moving enough air through the system for the gases to be adequately delivered to the scrubber tank.

Example of a scrubber system

After further discussion, the customer ordered our Model # 120022 2″ Super Air Amplifier to test under our Unconditional 30 Day Guarantee.  Air Amplifiers are one of the most efficient products in the EXAIR catalog. Using a patented internal shim, they use a small amount of compressed air that passes through an internal chamber where it is exhausted through a thin gap at high velocity. This directed airflow creates a lower pressure at the intake side which draws in a large amount of free air. The 2 combining air flows result in a large volume of “amplified”, high velocity exhausting airflow, making them ideal for increased air movement.

Air Amplifiers entrain enormous amounts of “free” air, at ratios of up to 25:1!

If you have an application where you need to increase airflow or if you’re looking to vent or exhaust noxious fumes, an Air Amplifier is the ideal choice. For help selecting the best Model or to discuss a particular process, please contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Pueblo Chemical Agent-Destruction Pilot Plant Agent Processing Building courtesy of PEO ACWA via creative common license.

 

Intelligent Compressed Air: Utilization of the Coanda Effect

Henri Coanda was a Romanian aeronautical engineer most known for his work developing what is today known as the Coanda effect. The Coanda effect is the propensity of a fluid to adhere to the walls of a curved surface. A moving stream of fluid will follow the curvature of the surface rather than continuing to travel in a straight line.  This effect is used in the design of an airplane wing to produce lift. The top of the wing is curved whereas the bottom of the wing remains straight. As the air comes across the wing, it adheres to the curved surface, causing it to slow down and create a higher pressure on the underside of the wing. This  is referred to as lift and is what allows an airplane to fly.

2695876474_d8e82d5ee4_z

The Coanda effect is also the driving force behind many of EXAIR’s Intelligent Compressed Air Products. Throughout the catalog you’ll see us talking about air amplification ratios. EXAIR products are designed to take advantage of this phenomenon and entrain ambient air into the primary air stream. Compressed air is ejected through the small orifices creating air motion in their surroundings. Using just a small amount of compressed air as the power source, Super Air Knives, Air Nozzles, and Air Amplifiers all draw in “free” ambient air amplifying both the force and the volume of airflow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Super Air Knives provide the greatest amount of air amplification at a rate of 40:1, one part being the compressed air supply and 40 parts ambient air from the environment. The design of the Super Air Knife allows air to be entrained at the top and bottom of the knife, maximizing the overall volume of air. Super Air Nozzles and Super Air Amplifiers also use this effect to provide air amplification ratios of up to 25:1, depending on the model.

HowItWorks
Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

The patented shim design of the Super Air Amplifier allows it to pull in dramatic amounts of free surrounding air while keeping sound levels as low as 69 dBA at 80 psig! The compressed air adheres to the Coanda profile of the plug and is directed at a high velocity through a ring-shaped nozzle. It adheres to the inside of the plug and is directed towards the outlet, inducing a high volume of surrounding air into the primary air stream. Take a look at this video below that demonstrates the air entrainment of a Super Air Amplifier with dry ice:

Utilizing the Coanda effect allows for massive compressed air savings. If you would like to discuss further how this effect is applied to our Super Air Knives, Air Amplifiers, and Air Nozzles give us a call. We’d be happy to help you replace an inefficient solution with an Engineered Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Adjustable Air Amplifier Keeps Sensor Cool

Our distributor in China has a customer who visited the United States, while their customer was in the US they saw an EXAIR product installed and wanted to replicate the setup in China. He saw the EXAIR label and reached out to our distributor for help in identifying the part. Taking a quick measurement of the inlet side of the Adjustable Air Amplifier led us to discern it was a Model 6041 1-1/4” Adjustable Air Amplifier.

adjustable air amplifier sensor cooling
EXAIR Model 6041

The product was installed on a baghouse monitoring system. The sensor is used to detect minor leaks within the dust collection system before the leaks create a major problem. The environment in which the sensor was installed results in temperatures that are just above the normal operating temperatures during warmer months and can result in erroneous readings. When this occurs, production is shutdown to prevent a failure of the dust collection system while the filters can be inspected. By installing the Adjustable Air Amplifier to provide a large volume of air and a low level of compressed air consumption, the temperature is able to be maintained within typical operating range for the sensor. This alleviates the need for unnecessary shutdowns (or unnecessary filter replacement), while ensuring that the working environment remains dust-free.

EXAIR’s Adjustable Air Amplifiers are available in both Stainless Steel and Aluminum from sizes ranging from ¾”-4” on the air outlet. The outlet can be ducted as seen in this application, or it can be used as-is. The air gap of the Adjustable Air Amplifier is infinitely adjustable, allowing you to regulate both the air consumption and outlet flow from a “breeze” to a “blast”. In addition to the standard Adjustable Air Amplifiers, we also have a Model 121021 High Temperature Air Amplifier available that is capable of withstanding temperatures as high as 700°F.

Air Amplifiers can be used in a variety of different applications. Not only can they be used in applications requiring cooling, but the air entrainment properties of the amplifier can be used to exhaust smoke as discussed in this application at a foundry. An Adjustable Amplifier can also be used for drying or cleaning parts as well as for conveying light materials.

Regardless of the application, EXAIR has a suitably sized Air Amplifier to fit your needs. If you need an efficient and reliable way to vent, cool, clean, or dry parts give us a call. An Application Engineer would be happy to take a look at your application and provide the best recommendation.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

EXAIR’s Super Air Amplifier Removes Scrap Label Trim

air amp italian dressing.PNG(2)
Placement of the Super Air Amplifier tucked away in the machine

Recently I worked with our distributor in Peru that had a customer who was experiencing a nuisance issue one of their production lines. The company is a graphics company that serves many different food manufacturers in the Peruvian market. In this case, they were making a label for a salad dressing company. During the converting process, scrap trim is produced. This was falling to the ground, building up over time, and eventually would need to be cleaned up. To do so, they had to stop production and have an operator manually clean up the mess before restarting the machine.

IMG_20180123_120318
EXAIR’s Model 120021

Enter EXAIR’s Model 120021 Super Air Amplifier. The customer positioned the amplifier so that it would catch the scrap trim and convey it away from the machine. They positioned a waste receptacle about 6’ away and ducted the amplifier to carry the scrap to this bin. This eliminated their need to stop production and allowed them to run continuously. Before installing the Super Air Amplifier, they had to stop the machine approximately 4x or more per day for cleanup. At 10 minutes per, this was 40 minutes of lost production time per day! After proving the concept on this machine, the customer now plans to outfit another 3 with the same setup.

Because the material was so light and was only traveling a short distance, the Super Air Amplifier was a suitable solution. We’ve blogged in the past about similar applications where scrap trim is conveyed using a Line Vac. This is also a suitable solution, the Line Vac can be sized to accommodate your material and prevent excess scrap from accumulating and causing problems in your processes.

If you have a converting application that produces scrap trim, give us a call. We can help size an appropriate solution and make sure you’re not wasting valuable production time cleaning up the mess!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@Exair.com
Twitter: @EXAIR_TD