Removing Condensation Is Key To Maintaining Performance

When air is compressed, it is heated to a point that causes the water or moisture  to turn to vapor. As the air begins to cool, the vapors turn to condensation, which can cause performance issues in a compressed air system. Many times this condensation forms in the basic components in the system like a receiver tank, dryer or filter.

Condensation is formed from water vapor in the air

It’s important to remove this condensation from the system before it causes any issues. There are four basic types of condensate drains that can be used to limit or prevent loss of air in the system.

The first method would be to have an operator manually drain the condensation through a drain port or valve. This is the least reliable method though as now it’s the operator’s responsibility to make sure they close the valve so the system doesn’t allow any air to escape which can lead to pressure drops and poor end-use device performance.

Example of a float drain

Secondly, a float or inverted bucket trap system can be used in plants with regular monitoring and maintenance programs in place to ensure proper performance.. These types of drain traps typically require a higher level of maintenance and have the potential to lose air if not operating properly.

An electrically actuated drain valve can be used to automatically drain the condensate at a preset time or interval. Typically these incorporate a solenoid valve  or motorized ball valve with some type of timing control.  These types of systems can be unreliable though as the valve may open without any moisture being present in the line, which can result in air loss or it may not be actuated open long enough for acceptable drain off. With these types of drains, it’s best to use some type of strainer to remove any particulate that could cause adverse performance.

Lastly,  zero air-loss traps utilize a reservoir and a float or level sensor to drain the condensate and maintain a satisfactory level. This type of setup is very reliable but does require the reservoir be drained frequently to keep the system clean and free of debris or contaminants.

If you have any questions or would like to discuss a particular process, contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Condensation image courtesy of Anders Sandberg via creative commons license

Float drain image courtesy of the Compressed Air Challenge

Digital Sound Level Meter Identifies Harmful Noise in the Workplace

slm-newlabel EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

 

To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The Digital Sound Meter can be used to monitor and measure sound levels of manufacturing processed such as blowoffs for cooling or drying.  Many blowoffs, especially open or drilled pipes are very inefficient and can be identified as a source of excessive noise, outside the OSHA exposure ranges.  Once the noise violators are identified, a review can be done and the implementation of engineered solutions such as Super air Nozzles or Super Air Knives can be investigated. Keeping harmful noise levels in check benefits everyone involved.

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

There is an informative Video Blog, presented by @EXAIR_LE that can be found here.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Receiver Tank Principle and Calculations

 

Visualization of the receiver tank concept

A receiver tank is a form of dry compressed air storage in a compressed air system.  Normally installed after drying and filtration, and before end use devices, receiver tanks help to store compressed air.  The compressed air is created by the supply side, stored by the receiver tank, and released as needed to the demand side of the system.

But how does this work?

The principle behind this concept is rooted in pressure differentials.  Just as we increase pressure when reducing volume of a gas, we can increase volume when reducing pressure.  So, if we have a given volume of compressed air at a certain pressure (P1), we will have a different volume of compressed air when converting this same air to a different pressure (P2).

This is the idea behind a receiver tank.  We store the compressed air at a higher pressure than what is needed by the system, creating a favorable pressure differential to release compressed air when it is needed.  And, in order to properly use a receiver tank, we must be able to properly calculate the required size/volume of the tank.  To do so, we must familiarize ourselves with the receiver tank capacity formula.

An EXAIR 60 gallon receiver tank

Receiver tank capacity formula

V = ( T(C-Cap)(Pa)/(P1-P2) )

 

Where,

V = Volume of receiver tank in cubic feet

T = Time interval in minutes during which compressed air demand will occur

C = Air requirement of demand in cubic feet per minute

Cap = Compressor capacity in cubic feet per minute

Pa = Absolute atmospheric pressure, given in PSIA

P1 = Initial tank pressure (Compressor discharge pressure)

P2 = minimum tank pressure (Pressure required at output of tank to operate compressed air devices)

An example:

Let’s consider an application with an intermittent demand spike of 50 SCFM of compressed air at 80 PSIG.  The system is operating from a 10HP compressor which produces 40 SCFM at 110 PSIG, and the compressed air devices need to operate for (5) minutes at this volume.

We can use a receiver tank and the pressure differential between the output of the compressor and the demand of the system to create a reservoir of compressed air.  This stored air will release into the system to maintain pressure while demand is high and rebuild when the excess demand is gone.

In this application, the values are as follows:

V = ?

T = 5 minutes

C = 50 CFM

Cap = 40 SCFM

Pa = 14.5 PSI

P1 = 110 PSIG

P2 = 80 PSIG

Running these numbers out we end up with:

This means we will need a receiver tank with a volume of 24.2 ft.³ (24.2 cubic feet equates to approximately 180 gallons – most receiver tanks have capacities rated in gallons) to store the required volume of compressed air needed in this system.  Doing so will result in a constant supply of 80 PSIG, even at a demand volume which exceeds the ability of the compressor.  By installing a properly sized receiver tank with proper pressure differential, the reliability of the system can be improved.

This improvement in system reliability translates to a more repeatable result from the compressed air driven devices connected to the system.  If you have questions about improving the reliability of your compressed air system, exactly how it can be improved, or what an engineered solution could provide, contact an EXAIR Application Engineer.  We’re here to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Video Blog: EXAIR Efficiency Lab

The video below is a brief introduction to the EXAIR Efficiency Lab, a free service provided by EXAIR for customers within the USA and Canada.

If you have a single point blowoff that does not have an engineered nozzle, or if you have a wider format blowoff, manifold or home-made drilled pipe, contact an Application Engineer with EXAIR and let us help you to reduce your energy waste. Following are some examples of product where we have helped to save some serious air and reduced noise levels which heightens employee comfort.

Non-engineered blowoffs
Drilled and soldered copper pipe.
Custom manufactured inefficient pipe blowoff

 

The EXAIR Efficiency Lab

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Super Air Knife Plumbing Kit Allows Installation In Tight Quarters

I recently had the pleasure of helping a long-time user of our Super Air Knives with a challenging application. They already use quite a few of our Model 110012SS 12″ Stainless Steel Super Air Knives to clean & dry their nonwoven material as it’s being rolled for packaging. They like them because they’re quiet and efficient, but also because they’re durable…this particular product off-gasses a mildly corrosive vapor, which used to corrode other equipment in the area. Not only does the Stainless Steel Super Air Knife resist corrosion itself, the air flow keeps these vapors contained. Two birds, one stone.

They have a new product…same kind of material, but much wider…that needed to be blown off, and the identified the Model 110060SS 60″ Stainless Steel Super Air Knife as a “no-brainer” solution. Thing is, it had to be a pretty even air flow across the length, and a 60″ Super Air Knife has to get air to four ports across its length for optimal performance. And, they wanted to install it at a point where it would serve not only as a blow off, but as a vapor barrier, just like the 12″ Super Air Knives they’re already so fond of. The space was a little limited, though, so they opted for the Model 110060SSPKI 60″ Stainless Steel Super Air Knife with Plumbing Kit Installed, which allowed them to simply run an air supply line to both ends.

EXAIR SS Super Air Knives can be ordered with a Plumbing Kit installed, or you can easily install a Plumbing Kit on your existing Super Air Knife.

If you want to find out more about an engineered solution for your compressed air application – cleaning, drying, vapor barrier, or all of the above – give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Intelligent Compressed Air: How to Develop a Pressure Profile

An important part of operating and maintaining a compressed air system is taking accurate pressure measurements at various points in the compressed air distribution system, and establishing a baseline and monitoring with data logging.  A Pressure Profile is a useful tool to understand and analyze the compressed air system and how it is functioning.

Pressure Profile 1
Sample Pressure Profile

The profile is generated by taking pressure measurements at the various key locations in the system.  The graph begins with the compressor and its range of operating pressures, and continues through the system down to the regulated points of use, such as Air Knives or Safety Air Guns.  It is important to take the measurements simultaneously to get the most accurate data, and typically, the most valuable data is collected during peak usage periods.

By reviewing the Pressure Profile, the areas of greatest drop can be determined and the impact on any potential low pressure issues at the point of use.  As the above example shows, to get a reliable 75 PSIG supply pressure for a device or tool, 105-115 PSIG must be generated, (30-40 PSIG above the required point of use pressure.)  As a rule of thumb, for every 10 PSIG of compressed air generation increase the energy costs increase 5-7.5%

By developing a total understanding of the compressed air system, including the use of tools such as the Pressure Profile, steps to best maximize the performance while reducing costs can be performed.

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Custom Air Amplifiers To Meet Most Any Requirement

When I think of “special” in regard to Air Amplifiers, I’m more inclined to think of the applications they can be used in. I mean, the Air Amplifier itself is about as straight-forward as an engineered compressed air product can be:

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

Considering the simplicity of the product itself, they can be used for a large variety of “typical” applications:

  • Cooling
  • Drying
  • Cleaning
  • Ventilation
  • Fume Exhausting
  • Dust Collection

There are no shortage of “special” applications either.  They’re used successfully in Air Operated Conveyance applications (when the stronger vacuum head of a Line Vac isn’t required) and we’ve even got a customer who uses one instead of an E-Vac Vacuum Generator for a “pick & place” operation…they’re picking up small, porous fiber discs (sort of like a coffee filter) one at a time, and the E-Vac wanted to pick up a good part of the whole stack, no matter how low they turned the pressure.  And of course, I can’t think of anything more special about Air Amplifiers than this:

You have to read it to believe it.  Follow the link and click on “Case Study: Roaring Banana Breath”

With fifteen distinct models to choose from in a range of sizes (3/4″ to 8″,) materials (aluminum or Stainless Steel) and even a High Temperature model that’s rated to 700°F (374°C), we’ve still made a fair number of Custom Air Amplifiers too…thirty-four, to be exact, as of this writing.

I won’t bore you with all the details – I can’t, actually, because some of them are proprietary* – but here are some “regular” examples of “special” accommodations:

  • Connections: EXAIR Air Amplifiers have smooth bores on the inlet & outlet plenums that you can hose clamp a hose (or round duct) to if you need to get air flow from, or to, one place or another.  Sometimes, though, they’re going in to an existing system, so we’ve made them with flanges (150#RF and Sanitary Tri-Clamp, for example) or threads (NPT or BSPP.)  If you want to use something other than a standard hose or duct line, we can help.
  • Material of construction: Our durable, lightweight aluminum Super & Adjustable Air Amplifiers are just fine an awful lot of the time.  Our type 303 Stainless Steel Adjustable Air Amplifiers will hold up to heat and corrosives.  We’ve also in PTFE (Teflon™) as well as a range of metal alloys to meet specific corrosion or wear conditions.  If your environment calls for a little something extra, we can help.
  • Assembly: Super Air Amplifiers are fitted with a stock shim that gives you published performance.  We’ve got other thicknesses, though, if you need more (or less) flow, though.  Adjustable Air Amplifiers are, well, adjustable…you just thread the plug in/out of the body until you get the results you want.  Sometimes the user knows what shim they want in a Super Air Amplifier, or what gap their Adjustable Air Amplifier needs to be set to, and we can assemble it accordingly.  If you have a ‘tried-and-true’ performance setting and want it met right out of the box, we can help.
  • Assembly, part 2: Good engineering practices call for lubrication on O-rings and threaded connections, and we use high quality, general purpose compounds when assembling our Air Amplifiers.  These are detrimental, however, in certain situations (silicone exclusion areas, I’m looking at you.) If certain chemicals or compounds are prohibited by your application, we can help.

*Let’s say you’ve done the “heavy lifting” to call out one (or more) of these special design features.  If we make a custom product (and that’s not just Air Amplifiers, by the way) using directions based on your time and labor, we’ll treat that product as proprietary to you, and you alone.

EXAIR has 208 catalog pages worth of Intelligent Compressed Air Products on the shelf…8 of those pages are our Air Amplifiers.  If you want to talk about customizing one to meet your needs, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook