EXAIR Optimization Products: Ultra Sonic Leak Detector Overview

Ultrasonic Leak Detector

The Ultrasonic Leak Detector is a hand-held, high quality instrument that can locate costly leaks in a compressed air system.  When using the Ultra Sonic Leak Detector, you only need to aim it in the direction of the suspected leak and if a leak is present an audible tone can be heard through the supplied headphones and the LED will light.  This can be accomplished from up to 20′ away!

If you are not maintaining your compressed air system you can easily waste up to 30% of your compressor’s output through leaks.  We all know compressed air is expensive, so mitigating wasteful leaks should be high on your to do list!

 

ultrasonic_2
EXAIR Ultrasonic Leak Detector

What is Ultrasound

Since most compressed air leaks emit only Ultra Sonic sound it would be next to impossible to find a leak by listening for them since the sound is above the human thresh hold.   That is where the EXAIR Ultrasonic Leak Detector comes in.  Its sensitivity is is adjustable with 3 settings X1, X10 and X100 along with an on/off thumb wheel for fine sensitivity adjustments.  The Ultra Sonic Leak Detector also comes with both a parabola or tubular extension to aim the unit and block out extraneous background noise.

If you have an application where you need to find an ultrasonic noise, you can speak with an Application Engineer to see if the model 9061 Ultrasonic Leak Detector could help.

If you would like to discuss the Ultra Sonic Leak Detector or any EXAIR product, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

How To Propose A Cost Saving Strategy To Management

Chances are if you have been on your job for a little while, you have noticed some processes or equipment that takes excessive time, wastes energy, etc.. and delivers less than optimal results.  So, just how do you communicate those observations to management in your organization?  You certainly do not want to embarrass yourself by having your idea torpedoed, nor let the company continue wasting money on inefficient processes or equipment.  The question becomes, how do you present your cost savings plan to the management team?  This blog will help you with that very question!

Your idea(s) for cost savings should be presented clearly and concisely with some key information highlighting the cost and the savings.  The simplest way to accomplish this is to quantify the savings for a given period of time and the payback schedule.  The payback schedule is generally calculated by dividing the cost of the project by the forecast savings.  Generally speaking, the shorter the time required for payback, the better the odds of your project being approved.

To start the process generate a (1) page overview that states the problem, cost of your proposal and the forecast savings.  A thorough and concise presentation will help sway any naysayers in the group, and you should include detailed information that includes current operating costs and how you arrived at those figures.

In the compressed air industry, EXAIR Intelligent Compressed Air products provide some easy installations and quick payback times without sacrificing production or quality – in many cases, we can improve production and quality.  Let’s consider the case below, where open tubes were being used to blow off punch presses.  We started by capping off (4) of the open tubes and trying one EXAIR 1100 Air Nozzle with a defined air pattern and we clearly needed more force.  That is when we attached the second super air nozzle, and voila! We had the amount of force and the air pattern required for this application, all while greatly minimizing air consumption and noise!  The image below shows what a sample air savings presentation sheet or test sheet may look like. 

Open Tube Cost Comparison

Considering the EXAIR 1100 Super Air Nozzle are $39 each, you can calculate that the payback time is slightly less than 10 working days per press, since two nozzles were used for each press.

When considering larger and more in-depth projects, naturally more documentation and information will be required.  In addition to the requirements for the above example, just be sure to include the following points:

  • List the action items for your proposal and any purchases that may be necessary.
  • Outline your proposed savings and document how you arrived at that number.
  • Discuss anything that may cause delays or not go as planned, and if possible, suggest viable workarounds.
  • Create a milestone schedule for all the major points in your plan.
  • Create illustrations.

If you would like to discuss increasing the efficiency of your compressed air usage, quieter compressed air products, and/or any EXAIR product,  I would enjoy hearing from you. Give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

 

 

 

 

Better Understand Your Blowoff Process with EXAIR’s FREE Efficiency Lab

panoramic view
The EXAIR Efficiency Lab

Many customers may not have the means to test the air consumption of their blowoff solutions. With compressed air being the most expensive utility in a manufacturing facility, it’s important to identify places where you can save money on your overall operating costs. EXAIR manufacturers a wide variety of products intended to help you reduce your compressed air usage. If you’re not able to accurately measure the consumption in your own shop, we invite you to send the products into EXAIR for testing. With EXAIR’s Award Winning Efficiency Lab, just simply contact an Application Engineer, box them up and send them to our warehouse in Cincinnati, Ohio.

EXAIR Efficiency Lab

Once we receive it, our engineers will complete some in-depth testing to determine the compressed air consumption, sound level, and force that your current solution provides. With this information, we’ll be able to compare it to an EXAIR Engineered Solution. This way we ensure that you receive the best, safest solution possible also capable of saving money through reduced air consumption and improved efficiency.  We’ll send you back a comprehensive report that’ll help you to make the best decision for your company.

I’ve been recently working with a customer that sent in one of the nozzles they’re using across all their CNC machines. They wanted us to test it out and see if we’re able to offer them something that could reduce their overall compressed air usage. The nozzle was one of the cheap plastic varieties and was attached to a commonly used modular hose. This type of modular hose is not designed for operating under high pressures. These hoses are more suitable for liquid coolant or air that is at or below atmospheric pressure.

IMG_7486
Inefficient and unsafe plastic nozzle

After testing, we found that at 80 psig the nozzle consumed 3.85 SCFM and produced a force of 1.92 oz. We also noticed that after 60 psig, the nozzle began to leak due to a poor seal where the nozzle met the brass hex. The EXAIR nozzle most suitable to replace this was the 1108SS. At just 2.5 SCFM at 80 psig, replacing the plastic nozzle with an engineered solution saves them 35% of their overall consumption for this blowoff. With close to 1000 of these nozzles in operation, that adds up quickly!!

In addition to increasing efficiency, replacing these nozzles also greatly increases overall worker safety. The sound level is reduced from 73 dBA to just 58 dBA and EXAIR’s nozzles also adhere to OSHA 1910.242(b). The plastic nozzles could be dead-ended, posing a hazard that can result in costly fines. These fines are assessed per infraction, so having multiple non-compliant nozzles can easily get very expensive if you’re subject to an unannounced visit by an OSHA inspector.

If you think you may have an opportunity to improve upon your existing blowoff methods, give us a call. We’ll be happy to take a closer look and have you send the product back to EXAIR for a quick trial in our Efficiency Lab. You’ll be glad you did!

Tyler Daniel
Application Engineer
E-mal: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Business Benefits Of Compressed Air Efficiency

The primary business benefits of an efficient air compressor system are reduced operational costs, reduced maintenance and increased up-time.  With that being said, is your compressed air system costing you more than you think it should?  Are you having failures, pressure drops, inadequate volume and/or pressure?  You might think from these issues that your system has seen better days and is ready to be replaced.  However, it is possible that your existing tried and true compressor system has more life left in it than you think and with a few simple steps you could have it performing like a champ again!

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air is .25 cents per 1000 SCFM, that translates into .075 cents for every .25 cents spent!  Considering that energy costs have doubled in the last five years, it couldn’t be more timely to make your air compressor system more efficient.

So just where is all this waste occurring?  The largest source of compressed air energy waste is from unused or leaked compressed air and that is followed by line pressure drops, over pressurization and inadequate maintenance of the compressor.

So how can you identify this issues in your system?

1). Finding leaks can be accomplished by several methods such as soapy water applied to a suspected joint or connection or the EXAIR Ultrasonic Leak Detector.   It is a high quality instrument that can locate costly leaks in your compressed air system.  When a leak is present and audible tone can be heard in the supplied headphones and the LED display will light.  This testing can be done up to 20′ away so need to get on a ladder!

Leak Detector

2). Pressure drop is caused by is caused by the friction of the compressed air flowing against the inside of the pipe and through valves, tees, elbows and other components that make up a complete compressed air piping system.  If the piping system is to small, the flow (volume) will not be sufficient and the devices will not operate properly.  The volumetric demand would need to be added up to determine if the piping is of sufficient diameter to flow the required volume.  EXAIR’s Digital Flow Meter is an easy way to monitor compressed air consumption and waste.  The digital display shows the exact amount of compressed air being used, making it easy to identify piping that may be undersized.  Installing one on every major leg of your air distribution system to constantly monitor and benchmark compressed air usage is a fast and efficient way to see what your volume through that distribution leg is.

Flow Meter

3). Over pressurization is also an issue, as the pressure is raised to account for high demand periods, system leaks and pressure drops. Unfortunately operating at higher pressures can require as much as 25 percent more compressor capacity than needed, generating wasted air which is called artificial demand.

You can reduce the leakage rate by running the compressor at lower pressures. If you’re short on air, don’t turn up the pressure. Run your compressor at no higher pressure than what you process requires. To relieve peak demands on your system consider the EXAIR Receiver Tank.  It store’s compressed air during low usage times and releases it when the demand is increased without working your air compressor system harder.

receiver_tank

4). Finally, a preventative maintenance (PM) program will need to be implemented to keep the air compressor system running properly.  Two items that are often neglected are the drive belts and filters.  Loose belts can reduce compressor efficiency and dirty filters allow dirt to get through the system and cause pressure drops.  EXAIR has replacement elements for our line of filter separators to keep you air clean and line pressure down.

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

 

 

 

 

 

 

Sound – It Adds Up! How to Calculate Decibel Levels

Keeping noise levels in check and at safe levels is very important to ensure employee safety and well being.  OSHA (the Occupational Safety and Health Administration) through standard 29 CFR-1910.95(a) has studied the situation and set Maximum Allowable Noise Exposure limits in Hours per Day based on the Sound Level, in dBA, of exposure.

For existing processes, a Digital Sound Meter is a valuable tool to measure the sound level to ensure that the source of loud noises can be quickly identified and isolated for immediate corrective action.

For new processes, or changes to an existing process, it is important to estimate the sound level prior to installation and start-up, so that precautions can be taken as needed.

For example, let’s say we are going to add a blow off station to clean off a part on a conveyor to improve the process and increase the throughput.  A typical set-up might be a 12″ Super Air Knife (model 110012) blowing off the top and a pair of Super Air Nozzles (model 1100) to blow off the sides.

SAK and ASAN
12″ Super Air Knife and Super Air Nozzle

If we look at the performance data for the (2) different blow off devices, we find that the Super Air Knife is rated at 69 dBA and the nozzles at 74 dBA, when operated at 80 PSIG of compressed air supply.

SAK and ASAN

When asked, “what is the sound level for (1) of the knives, and (2) of the nozzles” a little Acoustic Engineering is in order. The decibel scale is logarithmic, and determining the total sound level when all (3) devices are in operation is not as easy as adding up the three sound level values (which would equal 218 dBA, way off the charts!).  Thankfully, both the actual sound level and the numerical value are determined another way.  I’ll spare you a lot of the math but the equation is as below.

Capture

… where SL1, SL2, SL3, … are the sound levels in dBA of the each sound makers, for as many that are being combined (in our example SL1 = 69, SL2 = 74 and SL3 = 74)

Plugging in the numbers into the equation, the combined sound level works out to be a quiet 77.65 dBA — well within the OSHA limit for exposure for a full 8 hour period.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can make your process better and quieter, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

An Ultrasonic Leak Detector Helps with a Pressure Decay Leak Detector

Ultrasonic Leak Detector

A manufacturing company had a pressure decay leak system to check for leaks in compressed air housings.  Their detector was able to find leaks as small as 0.02 cc/min.  The leak program was designed for recording each housing with a batch/lot number and the corresponding leak data.  If the housing reached or surpassed the leak limit, the part would be marked and quarantined.  The pressure decay leak detector was a sensitive instrument, but it could not tell the operator where the leak was occurring.

How the pressure decay leak detector worked was by pressurizing the housing to a target pressure.  The flow valves would shut, isolating the housing.  After the pressure stabilized, the sensitive pressure sensors would pick up any loss in pressure over time.  If the leak limit wasn’t reached, a green light would indicate a good leak test.  If the limit was reached, a red light would indicate a failed leak test, and the housing would have to be segregated.

Reference Filter Housing

The housing design used a head, a bowl, a drain, and a differential pressure gauge.  The leak paths were numerous.  It could be at the drain, between the drain and the bowl, between the head and bowl, at the differential pressure gauge, and even in the casting of the head.  The heads were made from a die-casted aluminum.  If the process was not done properly, porosity could occur in the head.  The leak detector was sensitive enough to find any voids that would allow air to pass through the head casting.  With these many areas of potential leaks, it could be problematic if the reject rate was high.

For the application above, it is important to find where the leaks are occurring in order to create a corrective action.  In order to find the leaks, they purchased a model 9061 Ultrasonic Leak Detector from EXAIR.  Instead of pressure decay, the Ultrasonic Leak Detector uses sound.  Whenever a leak occurs, it will generate an ultrasonic noise.  These noises have a range of frequencies from audible to inaudible.  The frequencies in the range of 20 Khz to 100 Khz are above human hearing, and the Ultrasonic Leak Detector can pick up these high frequencies, making the inaudible leaks, audible.  The model 9061 has three sensitivity ranges and a LED display; so, you can find very small leaks.  This unit comes with two attachments.  The parabola attachment can locate leaks up to 20 feet (6.1 meters) away.  And the tube attachment can define the exact location.  With this application, they used the tube attachment to locate the leaks.  After retesting the failed housings, they found that 80% of the rejects were from a sealing surface.  They were able to replace or repair the o-rings.  10% of the leaks were coming from the drain.  3% of the rejects were leaking at the differential pressure gage.  Both the drains and the pressure gages could be replaced with new units.  7% of the housings had a porosity problem in the head of the housing.  For these, they were shipped back for evaluation to create a modification for a better casting.  The production manager shared with me that an extra vent hole was required to reduce the void.  This was a huge savings for the die-caster and manufacturing plant.

EXAIR Ultrasonic Leak Detector is a great tool.  It can be used in a variety of applications including compressed air systems, bearing wear, circuit breakers, refrigerant leaks, and gas burners to name few.  For the company above, it was a great tool to improve their assembly and testing process for their housings.  If you have an application where you need to find an ultrasonic noise, you can speak with an Application Engineer to see if the model 9061 Ultrasonic Leak Detector could help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Turn The Pressure Down & Save Money

In the past your typical industrial air compressor was rated to run at 100 psi and it was not often that this pressure was exceeded.  Lately with modern advances pressures have slowly crept up and have surpassed this threshold.  Unfortunately this has proven costly to the industrial user of compressed air.

To clarify this point, if a compressed air system is set to maintain 102 psi it will cost the plant 1% more in electric costs than if the system ran at 100 psi.  Also noteworthy is that unregulated air demands consume about 1% more flow for every psi of additional pressure.

So why is the air pressure getting so high and what can you do about it?  Here are some possible causes and solutions:

Devices that do require more than 100 psi:  It may not be the pneumatic device at all. If these devices are connected with restrictive fittings or there are excessive leaks in the system this can cause up to a 30 psi increase in line pressure just to make up for the poor piping. If this can be corrected it is possible that the pressure can be reduced.

EXAIR offers the Ultrasonic Leak Detector to facilitate tracking down hard to find system leaks and a wide variety of Air KnivesAir Amplifiers, Super Air Wipes, Air Nozzles, Line Vacs, Vacuum Generators and all of them are engineered to provide peak performance at 80 psi and make efficient use of compressed air. Though it is not uncommon for these products to provide a solution at much less pressure.

9061
EXAIR 9061, Ultrasonic Leak Detector

Applications that are believed to be high pressure:  Plant workers sometimes think that a higher air pressure is required than actually necessary.  This can be caused by a lack of training or perhaps the trainers are simply repeating what they have been taught in error.  It is good practice to review all locations that are using a higher pressure to determine if it is really necessary.

Loss due to undersize pipes:  If your plants compressed air supply lines are undersized for the volume demand, this can cause a significant restriction and raise the line pressure.  The EXAIR Digital Flow Meter can assist in recording how much demand is for a given point in time which will clarify usage.

9093
EXAIR Digital Flow Meter

 

Filter/Dryer restrictions:  If the Dryer or Filter/Separators are dirty and/or undersized the compressor operating pressure is typically raised to overcome these restrictions.  EXAIR has six sizes of Filter/Separators to ensure they are properly sized for the SCFM required by the devices that are connected to them.  Five of the models feature an automatic drain system and of course we carry the replacement filter elements and rebuild kits to keep them in top operating condition.

Temporary demands: There may be occasional peak compressed air demands in the plant that may be caused by a different or special compressed air process or machine. If the demand is greater than the supply, the pressure may be pulled down to unacceptably low levels.  In an attempt to make up for the increased demand a plant may raise the operating pressures.  The best way to cope with temporary demands is to install a receiver tank that stores compressed air that can be released when the demand calls for it.

receiver_tank
EXAIR 9500-60, 60 Gallon Receiver Tank

Factory default settings:  It is common for compressor manufacturers to set the air pressure at or very near the maximum pressure rating for that compressor.  There is no reason for this other than to verify that the air compressor will perform at its rated maximum pressure.  To save on air and maintenance costs the compressor should be set only as high as the maximum pressure for approved uses in the facility.

In the compressed air industry, EXAIR provides tools and products with quick payback times.

If you would like to discuss increasing the efficiency of your compressed air usage, quieter compressed air products and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook