Ultrasonic Leak Detector: Because Leaks Won’t Find (Or Fix) Themselves

I once worked in an equipment repair shop with a small and simple compressed air system…just a 5HP single acting piston compressor that sat atop a 50 gallon tank, in the corner by “The Big Truck”. The majority of our work was field service, and management was big on maintaining our service trucks, so we checked tire pressures every Monday morning as we rolled out, and kept a tire chuck handy to ensure proper inflation. It was also used to supply a couple of air guns that were used at our drill press and soldering/assembly station. One morning, I noticed the air compressor was running when I arrived…I thought it was odd, because I knew for a fact it hadn’t been used in at least 16 hours, but that compressed air went someplace, right? We had a leak. Well, at least one.

This was mid-December, and the week between Christmas and New Year’s Day was characteristically slow, and typically devoted to a thorough shop cleaning. We also took the opportunity to get some bottles of soapy water and check for leaks at the handful of pipe fittings that comprised the system…for the uninitiated, if you have a leaky fitting, the escaping air blows bubbles in the soapy water (a cheap, messy way in other words). We found some bubbling, undid those fittings, cleaned them, and applied fresh pipe thread sealant (I don’t want to start any arguments, but I was taught that tape is more of a thread protectant than an effective sealing agent) and, in addition to replacing a couple of well-worn hoses, we were up and running.  And we never heard the compressor running first thing in the morning again.

Not all compressed air systems are as simple as that, though.  Many go from a room with several large & sophisticated air compressors, to corners of every building on the grounds.  Through valves & manifolds, to cylinders, machinery and blow offs, with more connections than you could soap-and-water check in a month.

In those cases, the EXAIR Model 9061 Ultrasonic Leak Detector makes short(er) work of finding the leaks.  With both visual (LED’s on the face) and audible (headphones) indications, even very small leaks are easy to detect with the parabola installed.  The precise location can then be found with the tubular extension.

EXAIR Ultrasonic Leak Detector “hones in” on the exact location of a leak in a compressed air line.

You’ll still have to fix the leaks yourself, but finding them is oftentimes more than half the battle.  And, once fixed, it can be worth a million (cubic feet of compressed air, that is.)

EXAIR’s Ultrasonic Leak Detectors are not only useful for finding compressed air leaks; they’re popular in a variety of other areas:

Additionally, they can be used to identify faulty bearings, brake systems, tire & tube leaks, engine seals, radiators, electrical relay arcing…anything that generates an ultrasonic sound wave.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

How to Estimate Leaks and the Impact upon a Compressed Air System

In today’s age where compressed air is often referred to as the 4th utility in an industrial manufacturing facility, leaks throughout the system can add up to serious financial losses. It has been estimated that leaks can waste as much as 20-30 percent of an air compressor output.

waste

Not only are leaks a source of wasted energy, they can also contribute to other losses such as:

  • Causing a drop in system pressure, resulting in air tools to function less efficiently
  • Increasing the air compressor on/off cycles which shortens the life of it and other components in the system
  • Increased maintenance costs and more planned downtime for the maintenance to be performed
  • A need to install of additional compressors to make up for the inefficiencies caused by leaks

For compressors that have start/stop controls – the below formula can be used to estimate the leakage rate in the system-

Leakage Equation 1

To use the above formula, the compressor is started when there is no demand on the system –  all air operated equipment and devices are turned off.  As the air escapes the system through the leaks, the system pressure will drop and the compressor will turn on and cycle to bring the pressure back up to the operating level. Measurement of the average time (T) of compressor run duration, and time (t) of the system pressure to drop to the set-point can be plugged into the formula and a Leakage Percentage established.

Another method to estimate the leakage rate is shown below-

Leakage Equation 2

The above method requires knowledge of the total system volume, which includes downstream air receivers, air mains, and all piping.  To perform the check, bring the system pressure up the normal operating pressure (P1) and then measure the time (T) it takes for the system to drop to pressure (P2) which is generally around half the operating pressure.  The 1.25 is a correction factor to normal system pressure, since the leakage rate will be less as the system pressure is lowered.

A leakage rate greater than 10% typically shows that there are areas of improvement (leaks that can be identified and repaired)

Any leakage testing and estimating should be preformed regularly, at least each quarter, so as to minimize the effect of any new system leaks. The tests are only one part of a leak detection and repair program. The best way to detect leaks is the use of ultrasonic leak detector (shown below.)  To learn more about the EXAIR model 9061 Ultrasonic Leak Detector, check out this blog that was previously published.

kkkk

If you have questions about compressed air systems, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Cleaning Glass After a Cutting Machine, Super Air Knives to the Rescue

Glass cutting machine

A glass cutting facility was having issues with small shards of glass leaving the cutting machine.  After scribing and breaking individual panes, small pieces of glass would come apart from the edges of the glass.  These glass fragments would go downstream causing cuts on transport wheels as well as creating blemishes in the surface of the glass.  They needed a non-contact way to clean the glass as the panes left the cutting machine.

Their operation started with a 156” (3.96m) wide sheet of glass placed at the front of the cutting machine.  The glass was moved into the machine where it would scribe different dimensions and sizes to minimize any scrap.  As the machine was scribing, a protective separator would close off the cutting machine to protect the operators.  Once finished, the protective separator would open, allowing the glass sheet to exit on the other side of the machine.  As the glass was coming out, a break device would “crack” the glass panes on the scribed lines.  They wanted to clean the surface as the glass sheet was coming out to keep the fragments in the machine.

EXAIR Super Air Knife model 1100108

EXAIR has always been the leader in manufacturing the longest air knives in the industry.  The EXAIR Super Air Knives can be manufactured up to 108” (2.74m) long in one continuous length.  But, for this application, we had to tackle it in a different manner to reach across the entire width of 156” (3.96m).  EXAIR had a solution, the model 110900 Coupling Bracket Kit.  This can combine aluminum Super Air Knives for additional length.  It has all the hardware to securely attach the Super Air Knives end-to-end to get a continuous air flow along the entire length.  With the Coupling Bracket Kit, I recommended a model 110072, 72” (1.83m) long aluminum Super Air Knife with a model 110084, 84” (2.13m) aluminum Super Air Knife.  The customer was now able to clean the entire section of glass just in front of the exit of the cutting machine.  With the air knives directed to blow at a slight angle in the counter-flow direction, this non-contact form of cleaning was able to keep the shards inside the machine without scratching the surfaces.

Air Knife Coupling Bracket Kit

The Super Air Knives are designed to be the most efficient air knives in the market place.  It has a 40:1 amplification ratio which entrains 40 parts of ambient air to every 1 part of compressed air.  So, it will save you compressed air which in turn, will save you money.  Here at EXAIR, we like to go one step further for our customers.  EXAIR offers an Optimization product line to save the customer even more money, to reduce even more waste, and to become even more energy efficient.  For this customer above, I recommended an Electronic Flow Control, EFC.  This uses a photoelectric sensor to turn on a system only when compressed air is needed.  It is a small PLC unit with a timer control.  I recommended the model 9064-2 which has two solenoid valves to operate each Super Air Knife.  The photoelectric sensor can be adjusted for light and dark object, but for glass, we had to look for an alternative way.  I was able to have the customer place it on the protective separator.  Now, the Super Air Knives will remain turned off until after the scribing was completed. When the separator moved up, it would trigger the timing operation of the EFC.  By adding the EFC to their system, they were able to reduce the amount of compressed air by one-half.

click on picture for mor information

If you have a wide area that needs to be blown off, cooled, or dried; EXAIR may have a solution for you.  For the customer above, EXAIR was able to combine Super Air Knives with optimization for an efficient and effective way to clean a wide surface.  If you would like to discuss a solution for your “wide” application, you can contact an Application Engineer at EXAIR to discuss.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

EXAIR Optimization Products: Ultra Sonic Leak Detector Overview

Ultrasonic Leak Detector

The Ultrasonic Leak Detector is a hand-held, high quality instrument that can locate costly leaks in a compressed air system.  When using the Ultra Sonic Leak Detector, you only need to aim it in the direction of the suspected leak and if a leak is present an audible tone can be heard through the supplied headphones and the LED will light.  This can be accomplished from up to 20′ away!

If you are not maintaining your compressed air system you can easily waste up to 30% of your compressor’s output through leaks.  We all know compressed air is expensive, so mitigating wasteful leaks should be high on your to do list!

 

ultrasonic_2
EXAIR Ultrasonic Leak Detector

What is Ultrasound

Since most compressed air leaks emit only Ultra Sonic sound it would be next to impossible to find a leak by listening for them since the sound is above the human thresh hold.   That is where the EXAIR Ultrasonic Leak Detector comes in.  Its sensitivity is is adjustable with 3 settings X1, X10 and X100 along with an on/off thumb wheel for fine sensitivity adjustments.  The Ultra Sonic Leak Detector also comes with both a parabola or tubular extension to aim the unit and block out extraneous background noise.

If you have an application where you need to find an ultrasonic noise, you can speak with an Application Engineer to see if the model 9061 Ultrasonic Leak Detector could help.

If you would like to discuss the Ultra Sonic Leak Detector or any EXAIR product, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

How To Propose A Cost Saving Strategy To Management

Chances are if you have been on your job for a little while, you have noticed some processes or equipment that takes excessive time, wastes energy, etc.. and delivers less than optimal results.  So, just how do you communicate those observations to management in your organization?  You certainly do not want to embarrass yourself by having your idea torpedoed, nor let the company continue wasting money on inefficient processes or equipment.  The question becomes, how do you present your cost savings plan to the management team?  This blog will help you with that very question!

Your idea(s) for cost savings should be presented clearly and concisely with some key information highlighting the cost and the savings.  The simplest way to accomplish this is to quantify the savings for a given period of time and the payback schedule.  The payback schedule is generally calculated by dividing the cost of the project by the forecast savings.  Generally speaking, the shorter the time required for payback, the better the odds of your project being approved.

To start the process generate a (1) page overview that states the problem, cost of your proposal and the forecast savings.  A thorough and concise presentation will help sway any naysayers in the group, and you should include detailed information that includes current operating costs and how you arrived at those figures.

In the compressed air industry, EXAIR Intelligent Compressed Air products provide some easy installations and quick payback times without sacrificing production or quality – in many cases, we can improve production and quality.  Let’s consider the case below, where open tubes were being used to blow off punch presses.  We started by capping off (4) of the open tubes and trying one EXAIR 1100 Air Nozzle with a defined air pattern and we clearly needed more force.  That is when we attached the second super air nozzle, and voila! We had the amount of force and the air pattern required for this application, all while greatly minimizing air consumption and noise!  The image below shows what a sample air savings presentation sheet or test sheet may look like. 

Open Tube Cost Comparison

Considering the EXAIR 1100 Super Air Nozzle are $39 each, you can calculate that the payback time is slightly less than 10 working days per press, since two nozzles were used for each press.

When considering larger and more in-depth projects, naturally more documentation and information will be required.  In addition to the requirements for the above example, just be sure to include the following points:

  • List the action items for your proposal and any purchases that may be necessary.
  • Outline your proposed savings and document how you arrived at that number.
  • Discuss anything that may cause delays or not go as planned, and if possible, suggest viable workarounds.
  • Create a milestone schedule for all the major points in your plan.
  • Create illustrations.

If you would like to discuss increasing the efficiency of your compressed air usage, quieter compressed air products, and/or any EXAIR product,  I would enjoy hearing from you. Give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

 

 

 

 

Better Understand Your Blowoff Process with EXAIR’s FREE Efficiency Lab

panoramic view
The EXAIR Efficiency Lab

Many customers may not have the means to test the air consumption of their blowoff solutions. With compressed air being the most expensive utility in a manufacturing facility, it’s important to identify places where you can save money on your overall operating costs. EXAIR manufacturers a wide variety of products intended to help you reduce your compressed air usage. If you’re not able to accurately measure the consumption in your own shop, we invite you to send the products into EXAIR for testing. With EXAIR’s Award Winning Efficiency Lab, just simply contact an Application Engineer, box them up and send them to our warehouse in Cincinnati, Ohio.

EXAIR Efficiency Lab

Once we receive it, our engineers will complete some in-depth testing to determine the compressed air consumption, sound level, and force that your current solution provides. With this information, we’ll be able to compare it to an EXAIR Engineered Solution. This way we ensure that you receive the best, safest solution possible also capable of saving money through reduced air consumption and improved efficiency.  We’ll send you back a comprehensive report that’ll help you to make the best decision for your company.

I’ve been recently working with a customer that sent in one of the nozzles they’re using across all their CNC machines. They wanted us to test it out and see if we’re able to offer them something that could reduce their overall compressed air usage. The nozzle was one of the cheap plastic varieties and was attached to a commonly used modular hose. This type of modular hose is not designed for operating under high pressures. These hoses are more suitable for liquid coolant or air that is at or below atmospheric pressure.

IMG_7486
Inefficient and unsafe plastic nozzle

After testing, we found that at 80 psig the nozzle consumed 3.85 SCFM and produced a force of 1.92 oz. We also noticed that after 60 psig, the nozzle began to leak due to a poor seal where the nozzle met the brass hex. The EXAIR nozzle most suitable to replace this was the 1108SS. At just 2.5 SCFM at 80 psig, replacing the plastic nozzle with an engineered solution saves them 35% of their overall consumption for this blowoff. With close to 1000 of these nozzles in operation, that adds up quickly!!

In addition to increasing efficiency, replacing these nozzles also greatly increases overall worker safety. The sound level is reduced from 73 dBA to just 58 dBA and EXAIR’s nozzles also adhere to OSHA 1910.242(b). The plastic nozzles could be dead-ended, posing a hazard that can result in costly fines. These fines are assessed per infraction, so having multiple non-compliant nozzles can easily get very expensive if you’re subject to an unannounced visit by an OSHA inspector.

If you think you may have an opportunity to improve upon your existing blowoff methods, give us a call. We’ll be happy to take a closer look and have you send the product back to EXAIR for a quick trial in our Efficiency Lab. You’ll be glad you did!

Tyler Daniel
Application Engineer
E-mal: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Business Benefits Of Compressed Air Efficiency

The primary business benefits of an efficient air compressor system are reduced operational costs, reduced maintenance and increased up-time.  With that being said, is your compressed air system costing you more than you think it should?  Are you having failures, pressure drops, inadequate volume and/or pressure?  You might think from these issues that your system has seen better days and is ready to be replaced.  However, it is possible that your existing tried and true compressor system has more life left in it than you think and with a few simple steps you could have it performing like a champ again!

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air is .25 cents per 1000 SCFM, that translates into .075 cents for every .25 cents spent!  Considering that energy costs have doubled in the last five years, it couldn’t be more timely to make your air compressor system more efficient.

So just where is all this waste occurring?  The largest source of compressed air energy waste is from unused or leaked compressed air and that is followed by line pressure drops, over pressurization and inadequate maintenance of the compressor.

So how can you identify this issues in your system?

1). Finding leaks can be accomplished by several methods such as soapy water applied to a suspected joint or connection or the EXAIR Ultrasonic Leak Detector.   It is a high quality instrument that can locate costly leaks in your compressed air system.  When a leak is present and audible tone can be heard in the supplied headphones and the LED display will light.  This testing can be done up to 20′ away so need to get on a ladder!

Leak Detector

2). Pressure drop is caused by is caused by the friction of the compressed air flowing against the inside of the pipe and through valves, tees, elbows and other components that make up a complete compressed air piping system.  If the piping system is to small, the flow (volume) will not be sufficient and the devices will not operate properly.  The volumetric demand would need to be added up to determine if the piping is of sufficient diameter to flow the required volume.  EXAIR’s Digital Flow Meter is an easy way to monitor compressed air consumption and waste.  The digital display shows the exact amount of compressed air being used, making it easy to identify piping that may be undersized.  Installing one on every major leg of your air distribution system to constantly monitor and benchmark compressed air usage is a fast and efficient way to see what your volume through that distribution leg is.

Flow Meter

3). Over pressurization is also an issue, as the pressure is raised to account for high demand periods, system leaks and pressure drops. Unfortunately operating at higher pressures can require as much as 25 percent more compressor capacity than needed, generating wasted air which is called artificial demand.

You can reduce the leakage rate by running the compressor at lower pressures. If you’re short on air, don’t turn up the pressure. Run your compressor at no higher pressure than what you process requires. To relieve peak demands on your system consider the EXAIR Receiver Tank.  It store’s compressed air during low usage times and releases it when the demand is increased without working your air compressor system harder.

receiver_tank

4). Finally, a preventative maintenance (PM) program will need to be implemented to keep the air compressor system running properly.  Two items that are often neglected are the drive belts and filters.  Loose belts can reduce compressor efficiency and dirty filters allow dirt to get through the system and cause pressure drops.  EXAIR has replacement elements for our line of filter separators to keep you air clean and line pressure down.

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook