EXAIR Safety Air Gun Accessories Improve Effectiveness and Safety

Safety Air Gun with accessories

EXAIR offers 5 different styles of Safety Air Guns; Precision, VariBlast, Soft Grip, Heavy Duty and Super Blast.   You can read more about the different styles of Safety Air Guns from a previous EXAIR blog “Not All Compressed Air Guns Are The Same” written by Justin Nichol. I will be targeting the accessories that can enhance the features of the EXAIR Safety Air Guns. These additions will make the Safety Air Guns more dynamic without sacrificing safety, efficiency, or durability.

Precision Safety Air Gun with Chip Shield
eg. 1408SS-CS

Chip Shields:

OSHA 1910.242(b) requires chip guarding when compressed air is used for cleaning. EXAIR offers Chip Shields with our Safety Air Guns to meet this requirement. They are made from a polycarbonate disc which is practically unbreakable and protects the operator from any blow back of metal shavings or coolant. They come with a durable rubber grommet that squeezes onto the extensions and can be adjusted to maximize protection. We offer Chip Shields for the Precision, VariBlast, Soft Grip, and Heavy Duty Safety Air Guns with or without aluminum extensions.

Heavy Duty Safety Air Gun with extension.
eg. 1350-72

Extension Pipes:

For those far away targets and hard-to-reach areas, EXAIR offers aluminum extension pipes to attach to the Safety Air Guns. They can range from 6” (15 cm) to 72” (183 cm) in length. This light-weight and durable material allows for easy handling to reach high above your head or to span across unsafe areas. With the EXAIR air nozzles at the end, the blowing force is not sacrificed as the back pressure will generate a high velocity air stream. The aluminum extensions are offered with the Variblast, Soft Grip, and Heavy Duty Safety Air Guns. The Super Blast Safety Air Guns has the option for two different lengths of extensions, 3 feet (91cm) and 6 feet (183 cm).

Soft Grip Safety Air Gun with Stay Set Hose.
eg. 1210-6SSH

Stay Set Hose:

In certain situations, you may need a way to blow air around a corner or in a tight space. The Stay Set Hose gives you that possibility of manually adjusting or re-adjusting the nozzles to target the correct areas. The hose has a “memory” function, and it will not creep or droop until you physically move it again. They come in lengths from 6” (15cm) to 36” (91cm), and they are offered with the Soft Grip and the Heavy Duty Safety Air Guns.

Coiled Hose

Coiled Hoses:

To get the proper amount of compressed air from the piping system to the Safety Air Guns, EXAIR offers a series of Coiled Hoses. They are made of a durable abrasion-resistant nylon material that is 12 feet long (3.6 meters). They have swivel fittings to allow for easy uncoiling, and a spring strain relief to keep the hose from kinking at the ends. The coiled design makes it easy to reach around the work area and retract back to the substation. This will help to keep the hose off the ground where potential dangers could occur. We offer 3 different connection sizes of 1/8” NPT, ¼” NPT, and 3/8” NPT. They can be used with our Precision, VariBlast, Soft Grip, and Heavy Duty Safety Air Guns. With the proper size, the Coiled Hoses can connect easily to the Safety Air Guns and supply the required amount of air with a minimal amount of pressure drop.

Regulator and Filter

Filter Separators/Regulators:

To improve the use of the Safety Air Guns, EXAIR offers a series of filters and regulators. The filters will remove dirty particles and liquid water from the compressed air that can affect the performance of the Safety Air Gun as well as contaminate the surface that you are cleaning. The regulators can control the amount of air pressure used for the Safety Air Gun; making them even more efficient. The idea for compressed air savings is to use the least amount of compressed air to do the job. If you only need 40 PSIG (2.8 Bar) to blow off an area, then you can save almost 40% of your compressed air as compared to doing that same job at 80 PSIG (5.5 Bar). The combination of a filter and regulator will allow you to control the proper amount of clean dry air to be used.

 

All of our Safety Air Guns are fitted with our engineered Air Nozzles  which make them OSHA compliant for noise and dead-end pressure. With the accessories, you can optimize the use of the Safety Air Guns to better fit your application. If you need help in determine the correct Safety Air Guns and accessory items, you can contact an Application Engineer for help. If you are within the U.S. or Canada, you can take advantage of our 30-day unconditional guarantee to trial any of our stocked Safety Air Guns.

John Ball
Application Engineer
Email: mailto:johnball@exair.com
Twitter: @EXAIR_jb

Types Of Compressed Air System Dryers

Many times, when discussing product selection with a customer, we commonly reference supplying as clean and dry air as possible to promote peak performance. In iron piping systems for example, when moisture is present, rust can develop which can reduce the performance of end use compressed air operated devices like air tools or cause issues on the exhaust side as you could exhaust unwanted mist onto a surface, like in a painting operation.

Example of a desiccant dryer

Typically, an efficient and properly installed industrial compressed air system will include some type of dryer to remove any moisture that may be present in the supply.

Let’s take a look at the various types of dryers available.

Refrigerant and desiccant dryers are two of the more commonly used types of dryers.

Refrigerant based systems have several stages. The compressed air first passes through an air to air heat exchanger  which initially cools the air. The air is then delivered to an air to refrigerant exchanger where an external source of liquid refrigerant further cools the air and sends it to a separator, where the water vapors condensate and are removed through a drain trap. Now that the air is dry, it is then cycled back to the air to air exchanger where it is heated back to ambient temperature and exits the system.

Desiccant dryers typically incorporate 2 tanks containing a porous desiccant which causes the moisture to sort of “cling” to the surface. In these systems, compressed air flows through one tank, while, using it’s own regeneration cycle, heated or unheated air is blown through the desiccant in the other tank to remove the moisture and dry the air.

Membrane Dryers are typically used at the end use product. These types of systems utilize membranes to dissipate water vapor as it passes through the material, while allowing a small amount of the dry air to travel the length of the membrane to sort of “wipe” the condensate and remove it from the system.

Deliquescent Dryers use a drying agent which absorbs any moisture in the air. As the vapors react with the desiccant, like salt, the desiccant liquefies and is able to be drained at the bottom of a tank. These are the least expensive dryers to purchase and maintain because they have no moving parts and require no power to run.

When a dryer is being considered for a particular setup, there are 3 common reference points used when determining the dryers rating – an inlet air temperature of 100°F, supply pressure of 100 PSIG and an ambient air temperature of 100°F. Changes in supply pressure or temperature could change the performance of a particular dryer. You want to follow the manufacturer’s recommendations when dealing with variances as they will typically provide some type of conversion.

For help with this or any other topics relating to the efficient use of compressed air, please give us a call, we’d be happy to help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Heated Desiccant Dryers image courtesy of Compressor1 via creative commons license

Engineered Nozzles Replace Segmented Coolant Hose for Ink Drying Application

flat nozzle loc line comparison

Segmented Hose on the left and an HP1126 1″ Flat Nozzle on the right

A common item that can be found in a majority of machine shops is the blue or gray knuckle-jointed hose used to dispense coolant on lathes and CNC machines. EXAIR also uses this same hose with our Cold Guns and Adjustable Spot Coolers for applications that cannot or do not wish to use liquid coolant as a means of keeping the heat down on their tooling. Since the cold air discharges at atmospheric pressure, this is an acceptable application. Another application is using this style of hose as a compressed air blowoff. This is NOT a proper use of the hose and is not only a considerable waste of compressed air but can also pose a safety hazard. Using this method for compressed air blowoff is not compliant with OSHA 1910.242(b) (a directive we blog about).

I was recently contacted by a customer in Indonesia that was using an array of (6) of these knuckle-jointed hoses with a ¼” round nozzle attachment for a blowoff operation. The customer had a series of rubber pads used in the construction of a toy castle. The pads were brought along by an overhead conveyor and a design was printed on the head of the pad. The nozzles were used to dry the ink before the pad made it to the next part of the process. This was a new product line and the processes involved were being evaluated for potential places to save on compressed air rather than adding overall capacity to their system. After using a variety of EXAIR products for other blowoff applications, they came back for another engineered solution.

After testing both a 1009-9280 (Adjustable Air Nozzle w/ 30” Stay Set Hose) and an HP1126-9280 (1” High Power Flat Nozzle w/ 30” Stay Set Hose), the customer determined that the airflow pattern from the 1” Flat Nozzle was more conducive to drying the rubber pad and purchased the remaining units to replace their original method. The compressed air savings was noticed immediately!!

For the old operation, they had to regulate the pressure down on the hose to 25 psig so that the hose wouldn’t break apart. (1) This hose , with a ¼” round nozzle, will consume 52 scfm at 25 psig of supply pressure. With (6) of these they were consuming a whopping 312 scfm!! Since the HP1126 is compliant with OSHA directive 1910.242(b) and will not break apart at higher pressures, they were able to operate at 80 psig while only consuming 17.5 scfm. They saved more than enough air for their new process and are evaluating whether or not they can turn off one of their smaller 25 HP compressors.

The new setup with the EXAIR engineered solution was able to save them 207 scfm of compressed air. Assuming a cost of $.25/1000 scfm and a 40 hr work week, this translates to an overall savings of $6,458.40 per year off of their utility bill.

207 scfm x 60 minutes x 8 hrs/day x 5 shifts/week x 52 weeks/year =25,833,600 scf

25,833,600 scf x ($.25/1000 scf) = $6,458.40

If you’re using an inefficient compressed air blowoff in your facility, give us a call. An Application Engineer will be happy to evaluate your process and determine the safest and most efficient solution. With same day shipment for stock items on orders placed by 3:00 pm EDT, we can get a solution out to you by the following day!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Proper Supply Line Size And Fittings Provide Peak Performance

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of run, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. A 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

We also explain how performance can be negatively affected by improper plumbing in the following short video:

 

Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Calibration – Keep Your Meters True

EXAIR offers meters to measure the level of physical parameters such as sound and static. Each meter has sensitive electrical circuitry and a periodic calibration is recommended to ensure the meter readings are tried and true.

The model 9104 Digital Sound Level Meter is an easy to use instrument that measures and monitors the sound level pressure in a wide variety of industrial environments. The source of loud noises can be quickly identified so that corrective measures can be taken to keep sound levels at or below OSHA maximum allowable exposure limits.

The sound meter comes from the factory with an NIST (National Institute of Standards and Technology) certificate of accuracy and calibration.  As a good practice, EXAIR recommends a yearly calibration of the instrument, and we offer a service that calibrates the unit to the same NIST standards and provide a written report of the calibration.

The model 7905 Static Meter allows easy one-hand static measurements.  It is useful in both locating sources of high static charge and checking the reduction of static after treatment with an EXAIR Static Elimination product.  The unit is sensitive and responsive, and indicates the the surface polarity of objects up to +/- 20 kV when measured from 1″ away.

It is also recommended that the Static Meter be calibrated on a yearly basis.  EXAIR offers (3) levels of calibration service.  The first two provide calibration in accordance with MIL Standards using accepted procedures and standards traceable to NIST.  The third calibration service conforms to the same Mil Standard, as well as ISO/IEC standards.

Annual calibration service of your EXAIR Digital Sound and Static Meter, along with proper care and storage, will keep your meter performing tried and true for many years, providing accurate and useful measurements.

To initiate a calibration service, give us a call and an Application Engineer will issue an Returned Good number, and provide instructions on how to ship the meter to EXAIR.

If you have questions regarding calibration services for your meters or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Accessories – We’ve Got you Covered

When you work with us here at EXAIR, we strive to have all the ancillary items that you might need to make your installation a success, without having to find components at the last minute or perhaps using the wrong sized components. Each specific product line such as Super Air Knives or Line Vac air operated conveyors have specific accessories such as mounting brackets or plumbing kits which EXAIR has made to simplify the installation of those particular products. We also carry generalized accessories which work across all of the product lines so you do not have to use multiple vendors or purchase orders.

Silencing Mufflers – Per OSHA Standard 1910.95(a), a worker must not be exposed to sounds levels above 90 dBA for any eight hour shift of a 40 hour work week.  EXAIR offers several types of mufflers including – Reclassifying, Sintered Bronze, Straight-Through and Heavy Duty.  For reducing the noise associated with an EXAIR E-Vac Generator, Vortex Tube, Cabinet Cooler System, or the exhaust air from cylinders, valves and other air powered equipment, we’ve got a muffler that will help to keep the noise level at an acceptable level.

Mufflers

Solenoid and Manual Valves – The easiest way to reduce compressed air usage and save on operating expense is to turn off the compressed air to a device when it isn’t needed. EXAIR carries a wide assortment of solenoid valves, with offerings in the NEMA 4/4X classification, and supply voltages of 24VDC, 120VAC, and 240VAC.  We also have manual ball valves from 1/4 NPT to 1-1/4 NPT and a foot operated valve, with 1/4 NPT connections.

Valves

Swivel Fittings, Stay Set Hoses and Magnetic Bases – To provide a great degree of flexibility for positioning an EXAIR Super Air Nozzle, Air Jets or Air Amplifiers, EXAIR offers several items.  The Swivel Fittings have 25 degree of movement from the center axis, providing a total of 50 degree of adjustability.  The position is locked in place and holds until adjustment is needed. For applications where frequent re-positioning of the air device is required, the Stay Set Hoses are ideal.  Simply mount the hose close to the application, bend it to the shape preferred, and because the hose has “memory”, it will not creep or bend.  Lastly, the Magnetic Bases are another option for flexible, movable installations.  The base has a on/off valve, and a powerful magnet to hold in any vertical or horizontal mounting arrangement.

Swivels, StaySets,MagBases2

 

Hoses – EXAIR can provide hoses for your application.  For the Line Vac air operated conveyor applications, we offer conveyance hose – a durable, clear reinforced PVC hose, in diameters of 3/8″ to 3″ ID, and lengths up to 50′. On the compressed air side, we can provide 12′ Coiled Hoses with 1/8, 1/4, and 3/8 NPT connections, and also 3/8″ and 1/2″ ID hose in lengths to 50′.

Hoses

Filter Separators, Oil Removal Filters and Pressure Regulators – Perhaps the most important accessories for use on a compressed air device are filters and regulators. Filtering the compressed air of dirt, debris, moisture and oil will help to prevent build up inside the EXAIR products, leading to longer service life, and less time spent cleaning, while providing optimum performance. Regulating the air pressure allows for tuning of the performance, using the proper amount of compressed air to obtain satisfactory results.

Filter and Regualtors

If you have questions regarding accessories for use with any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Compressed Air Filtration – Particulate, Coalescing, and Adsorption Types

Compressed air systems will contain contaminants that can lead to issues and increased costs through contamination of product, damage to the air operated devices, and air line clogging and restriction. Proper air preparation is critical to optimizing performance throughout the plant operations.

Because there are different types of contaminants, including solid particles, liquid water, and vapors of water and oil, there are different methods of filtration, each best suited for maximum efficiency in contaminant removal.

Particulate Filters – The compressed air flows from outside to inside of the filter element. The compressed air first passes through a baffle arrangement which causes centrifugal separation of the largest particles and liquid drops (but not liquid vapors), and then the air passes through the filter element.  The filter element is usually a sintered material such as bronze.  The filter elements are inexpensive and easy to replace. Filtration down to 40-5 micron is possible.

9001

Particulate Type Filter with Sintered Bronze Element

Coalescing Filters – This type operates differently from the particulate type.  The compressed air flows from inside to outside through a coalescing media. The very fine water and oil aerosols come into contact with fibers in the filter media, and as they collect, they coalesce (combine) to form larger droplets towards the outside of the filter element. When the droplet size is enough the drops fall off and collect at the bottom of the filter housing.  The filter element is typically made up of some type glass fibers.  The coalescing filter elements are also relatively inexpensive and easy to replace. Filtration down to 0.01 micron at 99.999% efficiency is possible.

9005

Coalescing Type Filter with Borosilicate Glass Fiber Element

Adsorption Filters – In this type of filtration, activated carbon is typically used, and the finest oil vapors, hydrocarbon residues, and odors can be be removed.  The mechanism of filtration is that the molecules of the gas or liquid adhere to the surface of the activated carbon.  This is usually the final stage of filtration, and is only required for certain applications where the product would be affected such as blow molding or food processing.

When you work with us in selecting an EXAIR product, such as a Super Air Knife, Super Air Amplifier, or Vortex Tube, your application engineer can recommend the appropriate type of filtration needed to keep the EXAIR product operating at maximum efficiency with minimal disruption due to contaminant build up and unnecessary cleaning.

If you have questions regarding compressed air filtration or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

%d bloggers like this: