Benefits of an Ultrasonic Leak Detector

Ultrasonic Leak Detector

As margins get tighter and cost of manufacturing climbs, industries are looking into different areas to be more efficient.  A big focus nowadays is in their compressed air system.  Why is this?  Manufacturers are starting to realize that it takes an abundant amount of electricity to make compressed air.  That is why EXAIR manufactures compressed air products for optimization to get the best efficiency.  But what many manufacturers don’t realize is that quiet little hissing sound from there compressed air lines is costing them much money.   That is why EXAIR has the Ultrasonic Leak Detector.

Finding leaks will save you money

Energy Star, a federal voluntary program ran by the Environmental Protection Agency, offers energy-efficient solutions.  EXAIR has partnered with Energy Star because it underscores our commitment to improve energy savings.  They even wrote an excerpt about compressed air leaks here: Energy Tips: Minimize Compressed Air Leaks.  With compressed air leaks, it can be as much as 30% of your compressed air usage.

When a leak occurs, it emits an ultrasonic noise.  The EXAIR Ultrasonic Leak Detector can pick this up.  It has a frequency range from 20 KHz to 100 KHz, above human hearing, so it can make the inaudible leaks, audible.  With three sensitivity ranges and LED display, you can find very minute leaks.  It comes with headphones and two attachments; the parabola attachment to find leaks up to 20 feet (6 meters) away, and the tube attachment for local proximity to define the exact location of the leak.

In the Energy Tips from Energy Star, they reference estimated leak rates and costs associated with these leaks.  They also recommend a leak prevention program with reference materials to help improve energy savings.  As part of that program, an Ultrasonic Leak Detector is the best way to begin.

Checking pipe fittings

To tell a common success story about the Ultrasonic Leak Detector, an EXAIR customer had a 50-horsepower air compressor.  It started to overwork, overheat, and occasionally shut down.  He thought that he would need to buy a larger air compressor to keep his plant running.  In discussing his problems and requirements, he decided to purchase an Ultrasonic Leak Detector from EXAIR to check for leaks as a possible cause.  He checked every fitting and connection in his facility.  When he finished checking the compressed air system, he found 91 leaks.  (You will be surprised with your system if it is not well maintained).

If we look at a very small 1/16” (1.6mm) diameter hole at 80 PSIG (5.5 bar), it will cost you $360 a year per leak (based on 6000 working hours per year).  Thus, 91 leaks at $360/year will equal $32,760 per year.  After the fittings were reworked with piping compound, the compressor was back operating in a normal range.  There was no need to buy a larger air compressor with capital funds, and he was able to save $32,760 a year by finding and fixing the leaks.

As a little secret with the Ultrasonic Leak Detector, it can do more than find compressed air leaks.  Any issue that creates an ultrasonic noise, the Ultrasonic Leak Detector can find it.  This will include air damper seals, circuit breakers, cracked rubber belts, gas burner leaks, refrigerant leaks, worn bearings, and air brake systems on trucks.  It is a handy tool to find potential issues or problems in other areas other than compressed air systems.

For optimization of your compressed air system, it is very important to find and correct leaks in your piping system.  The Ultrasonic Leak Detector can help you do that.  It is an inexpensive way to solve an expensive problem, compressed air leaks.  If you would like to discuss the features and benefits in more detail, you can contact an Application Engineer at EXAIR.  We will be glad to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Finding & Fixing Leaks: The Benefits of Creating a Leak Detection Program

Leaks in a compressed air system can be a substantial source of wasted energy. A facility that hasn’t maintained their compressed air system will likely have a leak rate around 20-30% of the total air production.  But with a leak detection plan you can reduce air leaks to less than 10% of the compressor output.

uhd

Along with the energy waste, leaks will contribute to higher operating cost.  Leaks cause a drop in system pressure, which can make air tools operate poorly, harming production cost and time. In addition, by forcing the equipment to cycle more often, leaks shorten the life of almost all system equipment, including the compressor. Increased running time can also lead to added maintenance and increased downtime. Finally, leaks can lead to adding unnecessary compressor volume.

Since air leaks are almost impossible to see, other methods must be used to locate them. The best way to detect leaks is to use an ultrasonic acoustic detector, Like EXAIR Ultrasonic Leak Detector (ULD). This unit can recognize the high frequency hissing sounds associated with air leaks. A person using the ULD only needs to point it in the direction of the suspected leak. When a leak is present, an audible tone can be heard with the use of the head phones, and the LED display will light.  Testing various unions, pipes, valves and fittings of a complete system can be done quickly and effectively at distances up to 20’ away!

uhd kk

uhd e

The advantages of ultrasonic leak detection include flexibility, speed, ease of use, the ability to test the system while machines are running, and the ability to find a wide variety of leaks. They involve very little training, operators often become competent after 10 minutes of training.

Due to the nature of ultrasound, it is directional in transmission. For this reason, the signal is loudest at its source. By scanning around a test area, it is possible to very quickly target in on a leak site and pin point its exact location. For this reason, ultrasonic leak detection is not only fast, it is also very accurate.

An active leak prevention program will embrace the following components: identification, tracking, repair, verification, and employee participation. All facilities with a compressed air system should establish an aggressive leak reduction program. A team involving managerial representatives from production should be formed to carry out this program.

A leak prevention program should be part of an overall program intended to improve the performance of compressed air systems. Once the leaks are found and repaired, the system should be started from the beginning until all leaks are addressed.

A good compressed air system leak repair program is very important in maintaining the efficiency, reliability, stability and cost effectiveness of any compressed air system.

kkkk

“First a Plant Engineer or Maintenance Supervisor must realize that leak repair is a journey, not a destination. An ongoing compressed air leak monitoring and repair program should be in place in any plant that has a compressed air system.” Explains Paul Shaw, a General Manager for Scales Industrial Technologies’ Air Compressor Division, and an Advanced CAC Instructor, “Leak identification and remediation with a high quality repair can lead to substantial energy savings that typically has a very rapid payback, usually a year or less. In the hundreds of leak audits and repairs that we have done we’ve found that the quality of the repair is critical to ensuring the customer receive the most value for his investment and that the leak remains repaired for as long as possible. From there, constantly monitoring for compressed air leaks and repairing them as they occur can help the plant continue to reap the energy benefits.”

Above is an excerpt from “Best Practices for Compressed Air Systems”, Appendix 4.E.1.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

No Matter The Size of The System, Air Leaks Should be Fixed

Just last night I was in my garage tinkering around with a vintage Coleman Camping lantern from 1949 that I am working on refurbishing. I grabbed my parts washing bin (A bread pan my wife let me have because she didn’t like the way it cooked bread) and was reminded that I had been soaking a helmet lock from a friends dirt bike in a penetrating oil. I removed the lock from the pan, wiped it down, then went to my trusty 30 gallon compressor to use a Safety Air Gun to blow the residual oil out of the lock.

When not in use my compressor stays turned off and I modified the factory outlet to include a quarter turn ball valve so that I can retain all air in the receiver tank and not have to charge the tank up every time that I use it. As I turned the valve on I was reminded that I have a rather large air leak that can drain the 30 gallon tank down from 150 psig to 60 psig within a few hours.

While my air system is almost as simple as it can be, single air hose real with an additional quick disconnect before the hose reel for small quick blow offs, it still has over a dozen connections within the system. While my worst offending leak is audible to my slightly aged ears there are other leaks that I cannot see or hear. That is unless I use one of two methods I know to find leaks.

The easiest is right out of our 6 Steps of Compressed Air Optimization, the Ultrasonic Leak Detector (ULD). The ULD is a versatile, low cost, hands free electronic device that will quickly and easily detect the general vicinity of a leak and then easily pinpoint the exact point of the leak. In conducting a test, it took right at twenty minutes to test each of the connections within my system and identify which connections had leaks. The actual repairs of the leaks around an hour. Before fixing though I timed the amount of time it took a friend to use the soapy water method to detect the same leaks.

The soapy water method timed in at around thirty-five minutes for the same number of connections. This was due to a few of the fittings needing to be tested multiple times because of small leaks. It then took an additional fifteen minutes to wipe up all the soapy water that was now dripping down the air line and around the fittings.

While both methods found the same leaks and the ULD performed the task quicker and without any cleanup required, the true focus was on all leaks being repaired. My system has a dozen connection points for a two outlet compressed air system that are regulated and filtered at a single point. This system was draining a 30 gallon tank within a few hours which costs me every time I used my compressor and did not shut off the valve that shuts off the system.

This burden on my electrical bill was removed with less than two hours of labor and I can now leave the compressor fully charged and have air as soon as I need it rather than having to wait for the tank to charge up. Had this been in a production environment the cost could have crippled production resulting in catastrophic.

If you would like to discuss how leaks within your system can easily be found by using the ULD or would like to learn more about the other five steps in our Six Steps To Compressed Air Optimization, contact an Application Engineer.

Brian Farno
Application Engineer
Ph. 1-513-671-3322
BrianFarno@EXAIR.com
@EXAIR_BF

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Starting a Leak Prevention Program

Since all compressed air systems will have some amount of leakage, it is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs,and reduce compressor operation time which can extend its life and lower maintenance costs.

SBMart_pipe_800x

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.  Instead of a log system, the tag may be a two part tag.  The leak is tagged and one part of the tag stays with the leak, and the other is removed and brought to the maintenance department. This part of the tag has space for information such as the location, size, and description of the leak.

The best approach will depend on factors such as company size and resources, type of business, and the culture and best practices already in place. It is common to utilize both types where each is most appropriate.

A successful Leak Prevention Program consists of several important components:

  • Baseline compressed air usage – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Identify the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    ULD_Pr
    Using the Model 9061 Ultrasonic Leak Detector to search for leaks in a piping system
  • Document the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Prioritize and plan the repairs – Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Document the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

In summary – an effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Intelligent Compressed Air: Estimating Your Leakage Rate

waste

The electricity costs associated with the generation of compressed air make it the most expensive utility within an industrial environment. In a   poorly maintained compressor system, up to 30% of the total operational costs can be attributed simply to compressed air leaks. While this wasted energy is much like throwing money into the air, it can also cause your compressed air system to lose pressure. This can reduce the ability of the end use products to function properly, negatively impacting production rates and overall quality. Luckily, it’s quite easy to estimate the leakage rate and is something that you should be including in your regular PM schedule.

According to the Compressed Air Challenge, a well-maintained system should have a leakage rate of less than 5-10% of the average system demand. To estimate what your leakage rate is across the facility, first start by shutting off all of the point of use compressed air products so that there’s no demand on the system. Then, start the compressor and record the average time it takes for the compressor to cycle on/off. The compressor will load and unload as the air leaks cause a pressure drop from air escaping. The percentage of total leakage can be calculated using the following formula:

Leakage % = [(T x 100) / (T + t)]

Where:

T = loaded time (seconds)

T = unloaded time (seconds)

The leakage rate will be given in a percentage of total compressor capacity lost. This value should be less than 10% for a well-maintained system. It is not uncommon within a poorly maintained system to experience losses as high as 20-40% of the total capacity and power.

A leak that is equivalent to the size of a 1/16” diameter hole will consume roughly 3.8 SCFM at a line pressure of 80 PSIG. If you don’t know your company’s air cost, a reasonable average is $0.25 per 1,000 SCF. Let’s calculate what the cost would be for a plant operating 24hrs a day, 7 days a week.

3.8 SCFM x 60 minutes x $0.25/1,000 SCFM =

$0.06/hour

$0.06 x 24 hours =

$1.44/ day

$1.44 x 7 days x 52 weeks =

$524.16 per year

A small leak of just 3.8 SCFM would end up costing $524.16. This is just ONE small leak! Odds are there’s several throughout the facility, quickly escalating your operating costs. If you can hear a leak, it’s a pretty severe one. Most leaks aren’t detectable by the human ear and require a special instrument to convert the ultrasonic sound created into something that we can pick up. For that, EXAIR has our Model 9061 Ultrasonic Leak Detector.

ULD_Pr
Model 9061 ULD w/ parabola attachment checking for compressed air leaks

Implementing a regular procedure to determine your leakage rate in the facility as well as a compressed air audit to locate, tag, and fix any known leaks should be a priority. The savings that you can experience can be quite dramatic, especially if it’s not something that has ever been done before!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

How to Estimate Leaks and the Impact upon a Compressed Air System

In today’s age where compressed air is often referred to as the 4th utility in an industrial manufacturing facility, leaks throughout the system can add up to serious financial losses. It has been estimated that leaks can waste as much as 20-30 percent of an air compressor output.

waste

Not only are leaks a source of wasted energy, they can also contribute to other losses such as:

  • Causing a drop in system pressure, resulting in air tools to function less efficiently
  • Increasing the air compressor on/off cycles which shortens the life of it and other components in the system
  • Increased maintenance costs and more planned downtime for the maintenance to be performed
  • A need to install of additional compressors to make up for the inefficiencies caused by leaks

For compressors that have start/stop controls – the below formula can be used to estimate the leakage rate in the system-

Leakage Equation 1

To use the above formula, the compressor is started when there is no demand on the system –  all air operated equipment and devices are turned off.  As the air escapes the system through the leaks, the system pressure will drop and the compressor will turn on and cycle to bring the pressure back up to the operating level. Measurement of the average time (T) of compressor run duration, and time (t) of the system pressure to drop to the set-point can be plugged into the formula and a Leakage Percentage established.

Another method to estimate the leakage rate is shown below-

Leakage Equation 2

The above method requires knowledge of the total system volume, which includes downstream air receivers, air mains, and all piping.  To perform the check, bring the system pressure up the normal operating pressure (P1) and then measure the time (T) it takes for the system to drop to pressure (P2) which is generally around half the operating pressure.  The 1.25 is a correction factor to normal system pressure, since the leakage rate will be less as the system pressure is lowered.

A leakage rate greater than 10% typically shows that there are areas of improvement (leaks that can be identified and repaired)

Any leakage testing and estimating should be preformed regularly, at least each quarter, so as to minimize the effect of any new system leaks. The tests are only one part of a leak detection and repair program. The best way to detect leaks is the use of ultrasonic leak detector (shown below.)  To learn more about the EXAIR model 9061 Ultrasonic Leak Detector, check out this blog that was previously published.

kkkk

If you have questions about compressed air systems, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Discharge of Air Through an Orifice

My Application Engineer colleagues and I frequently use a handy table, called Discharge of Air Through an Orifice. It is a useful tool to estimate the air flow through an orifice, a leak in a compressed air system, or through a drilled pipe (a series of orifices.) Various tables and online calculators are available. As an engineer, I always want to know the ‘science’ behind such tables, so I can best utilize the data in the manner it was intended.

DischargeThroughAnOrifice

The table is frequently found with values for pressures less than 20 PSI gauge pressure, and those values follow the standard adiabatic formula and will not be reviewed here.  The higher air pressures typically found in compressed air operations are of interest to us.

For air pressures above 15 PSI gauge the discharge is calculated using by the approximate formula as proposed by S.A. Moss. The earliest reference to the work of S.A. Moss goes back to a paper from 1906.  The equation for use in this table is-EquationWhere:
Equation Variables

For the numbers published in the table above, the values were set as follows-

                  C = 1.0,      p1 = gauge pressure + 14.7 lbs/sq. in,    and T1 = 530 °R (same as 70 °F)

The equation calculates the weight of air in lbs per second, and if we divide the result by 0.07494 lbs / cu ft (the density of dry air at 70°F and 14.7 lbs / sq. in. absolute atmospheric pressure) and then multiply by 60 seconds, we get the useful rate of Cubic Feet per Minute.

The table is based on 100% coefficient of flow (C = 1.0)  For well rounded orifices, the use of C = 0.97 is recommended, and for very sharp edges, a value of C = 0.61 can be used.

The table is a handy tool, and an example of how we use it would be to compare the compressed air consumption of a customer configured drilled pipe in comparison to that of the EXAIR Super Air Knife.  Please check out the blog written recently covering an example of this process.

If you would like to talk about the discharge of air through an orifice or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB