Compressed Air in Farming and Agriculture

I used to help my father-in-law around his farm and this city boy had his eyes opened when he realized it was more than shovels, tractors and livestock. Agriculture is vital for human existence and has become far more advanced over the centuries with a continual thirst for efficiency and technology. Agriculture is just like many other industries looking for continued ways to increase yield, improve quality, maximize labor and improve technology.

EXAIR has many products used in the agriculture and food processing industries. The following details a few example by product line how we can influence efficiencies and quality of products:

Super Air Knife drying fruits and vegetables

Super Air Knives:

EXAIRs Super Air Knives are have ben used to help harvest apples and peaches. In this case they use our Super Air Knives to dry and blow off the fruit after the rinsing process just before the waxing process then again after waxing to blow off any remaining debris or moisture from the fruit before being packed.

A processing company using the Super Air Knife to clean a conveying belt equipped with a weighing system. Before the installation of the the Super Air Knife some of the cut vegetables being weighed would stick to the belt. Their solution was to clean the conveyor belt with EXAIR’s Super Air Knife to ensure continuous operation of the weighing and packaging systems.

Super Air Nozzles:

An onion farmer used EXAIR’s Model 1100 Super Air Nozzle to blow loose onion skins from the onions before packaging to improve the aesthetics to the customers.

Line Vacs:

A food packaging company repackages banana peppers from 55 gallon drums to 1 and 5 gallon containers using our Model 6066 3″ Stainless Steel Line Vac.

Using EXAIRs Model 150200 2″ Heavy Duty Line Vacs a feed stock manufacturer conveys various grains and feed stock simultaneously to a mixer which blends the ingredients. This reduced their blend time by 50%.

A grain processor used Model 142200 aluminum threaded Line Vac to convey small amounts of corn meal into a hopper which feeds into their inspection process.

A company producing worm eggs encapsulated in water soluble wax sold to farmers to enhance soil conditions. They eliminated a hand operation using Model 6081 1″ Aluminum Line Vac  to convey the worm eggs from one classifier to another.

EXAIR has several applications using Atomizing Spray nozzles to add moisture in growing environments . Greenhouses use our Atomizing spray nozzles to control humidity in the air and keep their soils moist to maintain optimal growing environments.

There are many other applications using compressed AIR on farms such as filling tires, cleaning equipment, blowing out water lines and more. Technology drives labor savings and improved quality prototypes are being designed and tested to use compressed air using drones to shoot pods filled with seeds, fertilizer and other nutrients into the soil. EXAIR will remain a strong influence in the growth of compressed air products helping to reduce the carbon footprint, enhance efficiencies and improve cost and quality within the agriculture and food processing industries.

If you have an application and you would like to talk please contact me or any of our qualified Application Engineers at 800.903.9247 and we will gladly help with our best recommendations.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Engineered Air Nozzles by EXAIR Replace Modular Coolant Hose & Save Thousands!!

A common item that can be found in a majority of machine shops is the blue or gray knuckle-jointed hose used to dispense coolant on lathes and CNC machines. EXAIR also uses this same hose with our Cold Guns and Adjustable Spot Coolers for applications that cannot or do not wish to use liquid coolant as a means of keeping the heat down on their tooling. Since the cold air discharges at atmospheric pressure, this is an acceptable application.

Another application is using this style of hose as a compressed air blowoff. This is NOT a proper use of the hose and is not only a considerable waste of compressed air but can also pose a safety hazard. Using this method for compressed air blowoff is not compliant with OSHA 1910.242(b).

I was recently contacted by a customer in Indonesia that was using an array of (6) of these knuckle-jointed hoses with a ¼” round nozzle attachment for a blowoff operation. The customer had a series of rubber pads used in the construction of a toy castle. The pads were brought along by an overhead conveyor and a design was printed on the head of the pad.

The nozzles were used to dry the ink before the pad made it to the next part of the process. This was a new product line and the processes involved were being evaluated for potential places to save on compressed air rather than adding overall capacity to their system. After using a variety of EXAIR products for other blowoff applications, they came back for another engineered solution.

HP1126-9280 unassembled

After testing both a 1009-9280 (Adjustable Air Nozzle w/ 30” Stay Set Hose) and an HP1126-9280 (1” High Power Flat Nozzle w/ 30” Stay Set Hose), the customer determined that the airflow pattern from the 1” Flat Nozzle was more conducive to drying the rubber pad and purchased the remaining units to replace their original method. The compressed air savings was noticed immediately!!

For the old operation, they had to regulate the pressure down on the hose to 25 psig so that the hose wouldn’t break apart. (1) This hose , with a ¼” round nozzle, will consume 52 scfm at 25 psig of supply pressure. With (6) of these they were consuming a whopping 312 scfm!! Since the HP1126 is compliant with OSHA directive 1910.242(b) and will not break apart at higher pressures, they were able to operate at 80 psig while only consuming 17.5 scfm. They saved more than enough air for their new process and are evaluating whether or not they can turn off one of their smaller 25 HP compressors.

The new setup with the EXAIR engineered solution was able to save them 207 scfm of compressed air. Assuming a cost of $.25/1000 scfm and a 40 hr work week, this translates to an overall savings of $6,458.40 per year off of their utility bill.

207 scfm x 60 minutes x 8 hrs/day x 5 shifts/week x 52 weeks/year =25,833,600 scf

25,833,600 scf x ($.25/1000 scf) = $6,458.40

If you’re using an inefficient compressed air blowoff in your facility, give us a call. An Application Engineer will be happy to evaluate your process and determine the safest and most efficient solution. With same day shipment for stock items on orders placed by 2:00 pm ET, we can get a solution out to you fast. And you can be saving money upon installation!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

These Nozzles Clean Blind Holes, Pipe Inside Diameters, Tube, Channels and More

EXAIR manufactures a variety of Air Nozzles and Jets . Back Blow Air Nozzles can help reduce cost, clean hard to get to areas in small diameters, pipes, tubes, channels and holes. These nozzles are designed to remove debris from pipes, blind holes, and other areas where it is difficult be effective. Sometimes it is a bad idea to blow debris all the way through a pipe because there may be personnel on the other end or it is simply too long or it may be sealed on an end. 

The Model 1006SS cleans metal shavings from inside a pipe.

The Back Blow Air Nozzles are all made from 316 Stainless Steel with three sizes as outlined below:

Model 1004SS: This is a M4 x 0.5 and delivers the smallest, most effective airflow for cleaning out small diameter tubes, pipes, channels or holes for diameters between 1/4″ up to 1″. Extension pipes available from 6″ up to 36″ in length.

Model 1006SS: The 1/4 NPT Back Blow Nozzle recommended for a wide range of diameters from 7/8″ up too 4″. Extension pipes available from 12″ up to 72″ in length.

Model 1008SS: 1 NPT female and the largest Back Blow Nozzle in stock for diameters from 2″ up to 16″ with pip extensions available from 12″ up to 72″ long.

Model 1306SS-6-CS Heavy Duty Safety Air Gun with 6″ extension and chip shield

These nozzles can also be assembled to our VariBlast, Soft Grip, Heavy Duty and Super Blast Safety Air Guns. EXAIR safety air gun options include chip shields and pipe extensions up to 72″ long. EXAIR has the products and accessories you need to make any job more efficient saving you time and money. Give us call at 800.903.9247 and ask for any of our qualified Application Engineers to help you. Most items are stock and can be shipped the same day if we receive and enter your order by 3:00PM EDT.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Considerations for Ejecting Parts with an Air Nozzle: Weight and Friction

I had a customer wanting to reject a container off a conveyor belt.  The container held yogurt, and when an optic detected a reject, they wanted to operate a solenoid to have a nozzle blow the container into a reject bin.  They had a range that went from 4 oz. (113 grams) for the small containers to 27 oz (766 grams) for the large.  He wanted me to suggest one nozzle for all sizes, as they would automatically regulate the pressure for the full range of products.  In looking at the largest size, this container will need the most force to blow off the conveyor.  The two factors that affects the force in this type of application is weight and friction.  When it comes to friction, it is generally an unknown for customers.  So, I was able to help with a couple of things to determine the friction force.

Friction is a dimensionless number that represents the resistance created between two surfaces.  We have two types; static friction, ms, and kinetic friction, mk.  Static friction is the maximum amount of resistance before the object begins to move or slide.  Kinetic friction is the amount of resistance that is created when the object is moving or sliding.  So, Static friction is always greater than kinetic friction, ms > mk.  For this application, we will use an air nozzle to “shoot” horizontally to hit the rejected product.

Let’s take look at our customer’s application.  We have a system to reject a non-conforming part with air.  The conveyor has a urethane belt.  The container is plastic.  For the largest container, they have a weight of 27 oz. (766 grams).  Being that the conveyor belt is only 12” (30.5 cm) wide, we can determine that if we get the part moving, it will continue off the belt and into the reject bin.  The equation for the maximum amount of force required to move a container is below as Equation 1.

Equation 1

Fs = ms * W

Fs – Static Force in ounces (grams)

m– Static Friction

W – Weight in ounces (grams)

One way to determine the amount of force is to use a scale similar to a fish scale.  The scale should have a maximum indicator to help capture the maximum amount of force.  You will have to place the object on the same belt material because different types of materials will create different static forces. Keep the scale perpendicular to the object, and slowly pull on the scale.  Once the part begins to move, record the scale reading.  For the exercise above, it showed 9.6 oz. (271 grams) of force to move the 27 oz. (766 gram) object.

Another way would be to calculate the static friction, ms.  Static friction can be found by the angle at which an object starts to move.  By placing the container on a section of supported urethane conveyor belt, you can lift one end until the object starts to slide.  The height of the lift can be measured as an angle.  As an example, we take 3 feet (0.9 meter) of supported urethane conveyor belt, and we lifted one end to a height of 1 foot (0.3 meters) before the 27 oz (766 gram) container moved.  To determine static friction, it is the tangent of that angle that you lifted.  With some right triangle trigonometry equations, we get an angle of 19.5o.  Thus, ms = tanq or ms = tan(19.5o) = 0.354.  If we plug this into Equation 1, we get the following:

Imperial Units                                                    SI Units

Fs = ms * W                                                         Fs = ms * W

= 0.354 * 27 oz.                                                = 0.354 * 766 grams

= 9.6 oz. of force                                              = 271 grams of force

1″ Flat Super Air Nozzles

Now that we have the static force, we want to be slightly higher than that.  In looking at the force requirements that are published in the EXAIR catalog, it shows that the model 1126 1” Super Flat Air Nozzle has a 9.8 oz. (278 grams) of force at 80 PSIG (5.5 Bar).  This force is measured at a 12” (30.5 cm) distance with a patented .015” (0.38mm) shim.  So, this nozzle will be able to slide the largest container into the reject bin.

1″ Flat Super Air Nozzle shims

To expand on the benefits in using the EXAIR Flat Super Air Nozzles, the force can be changed easily with a regulator or with a Shim Set.  This is a unique feature as most competitive flat nozzles do not allow you to do this.  The patented shims control the force rating in a wide range with lower air consumption and lower noise levels; making them safe and efficient.  So, if this manufacturer decided to produce other sizes in the future, then they could change the shim to target even larger containers.  The flexibility of using the EXAIR Flat Super Air Nozzles allow you to increase or decrease the force by just removing two screws and changing the thickness of the shim inside.  EXAIR does offer a pack of shims with different thicknesses which are called a Shim Set.

With air pressure or shim manipulation, the customer could use the same nozzle for the yogurt containers.  If you have any applications that need products to be rejected quickly, an Application Engineers at EXAIR will be happy to help you with a solution.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo: Yogurt by BUMIPUTRAPixabay Licence