Air Nozzles, Air Jets and Swivels

EXAIR’s Engineered Air Nozzles and Air Jets provide a superior solution to minimize compressed air usage and reduce noise levels for compressed air blow-off operations.

Air Nozzles and Jets – when compared to commonly used open copper tubes or pipes the compressed air savings can be as high as 80%. With less compressed air, sound levels are greatly reduced.  A 10 dBA noise level reduction is typical.  All EXAIR Air Nozzles and Jets meet OSHA guidelines for dead end pressure and sound level exposure requirements.

nozzlescascade2016cat29_559
EXAIR has engineered air nozzles for virtually any application 

EXAIR Nozzles are designed and manufactured to take advantage of the Coanda (wall attachment of a high velocity fluid) effect which can amplify the airflow up to 25 times. The compressed air exits through the small holes on the nozzle which entrains the surrounding air. The effect from this is a high volume, high velocity blast using less compressed air.  EXAIR manufactures many sizes and styles of air nozzles from the smallest, but quite powerful Atto Super Air Nozzles to our largest 1-1/4 NPT Super Air Nozzle.  We also offer Flat Super Air Nozzles, and the Back Blow style nozzle for cleaning out tubes, pipes, channels or holes from 1/4″ to 16″ in diameter.

All of our Air Nozzles are engineered to meet or exceed OSHA Standard 1910.24(b) for 30 PSIG dead end pressure, they cannot be dead-ended as there is always a route for the air to escape so the outlet pressure will never reach 30 PSIG. In addition, our products are going to meet the OSHA Standard CFR 29 – 1910.95(a) for allowable noise exposure levels.
EXAIR Air Jets also utilize the Coanda effect to produce air motion in their surroundings.  A small amount of compressed air (1) is throttled through an internal ring nozzle above sonic velocity.  A vacuum is produced, pulling in large volumes of surrounding, or ‘free’ air, through an around the jet (2).  The exit flow is the combination of the two air sources (3).

air-jet
How an Air Jet Works

EXAIR manufactures Air Jets in two types, High Velocity, and Adjustable with materials of construction of brass and Type 303 Stainless Steel.  The High Velocity Air Jet uses a changeable shim to set the gap, controlling the force and flow of the air.  The Adjustable does not use a shim, and has a micrometer gap indicator and locking ring to allow for varying force and flow performance.

AirJetFamily
EXAIR Air Jets – High Velocity type on the left, Adjustable type on the Right
Swivel Fittings available from M4 up to 1″ NPT

EXAIR’s Swivel Fittings make it easy to adjust the position of the Air Nozzles and Air Jets.  The fittings allow for movement of 25° form the center axis for a total movement of 50°.  There are nine different models available and all of them are made from stainless steel

If you would like to discuss blow off, noise levels, dead end pressure or any of EXAIR’s intelligent compressed air usage solutions, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Video Blog: With EXAIR Products, Engineering Maximizes Efficiency

This video blog showcases just why engineering even the small details of a compressed air product can have a large impact on compressed air savings, safety, and efficiency.  This is why it is critical to know whether the company you are dealing with originally designed the product you purchased or if it is merely a copy.

 

 

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com @EXAIR_BF

1″ Flat Super Air Nozzle Makes Clean Sweep Of Greasy Chain

A manufacturer of lubrication equipment had a messy problem to solve with a customized system they were designing, to apply grease to a drive chain.  They wanted to clean excess grease off the chain and deposit it into a reclaiming chamber, both to keep the area clean, and to prevent waste.  And because of the corrosive nature of the environment, it had to be stainless steel.  This was a “textbook” application for our Model 1126SS 1″ 316SS Flat Super Air Nozzle.

 

EXAIR’s 1″ Flat Super Air Nozzle is available in Zinc Aluminum or 316SS Construction. The replaceable shim makes it one of our most versatile products.

They also needed to lock it into position, once the exact angle of the air flow was determined, so they incorporated a Model 9052 1/8 NPT SS Swivel Fitting into their design.

When supplied with a Swivel Fitting, the 1″ Flat Super Air Nozzle can be precisely aimed for the most exacting applications.

Now the chain is clean, the grease is reclaimed, and the simplicity of the operation drew a lot of positive attention from the client.

I’ve written about this before, but it bears repeating…EXAIR Corporation’s plan for success is centered on being easy to do business with.  This was a situation where every facet of the project was impacted by our commitment to that goal:

*The customer and I determined the correct product to try in just a few minutes on the phone.

*The order shipped out, same day.

*The attention to detail that Engineering and Production put into the development of this product became evident in the ease of installation and operation.

From the moment you contact EXAIR, to the moment you achieve success in your application, it’s our job to make sure you get the most out of our products. If you have a job that you think one of our products might be a good fit for, give me a call.

EXAIR’s Swivel Fittings Provide Precise Blowoff Positioning

swivel_extrusionblow_PRgrey_800pSQ
EXAIR’s smaller Swivel Fittings for the Atto, Pico, and Nano Super Air Nozzles

Are you tired of having to scrounge around the production floor for the right fittings to precisely position your air nozzle? Not only is it a pain to try and find the correct fittings, extensions, etc. but once you do the position of the nozzle is hard to adjust. To alleviate this problem, EXAIR has designed a variety of different sized swivel fittings that allow you to precisely position the nozzle, then easily tighten and lock into place.

swivel comparison
Don’t waste time using various pipe fittings to position your nozzle, use an EXAIR Swivel Fitting

EXAIR’s Swivel Fittings are available in 9 different sizes, from as small as 1/8” NPT male x M4 x .5mm female and up to 1” NPT male x 1” NPT female. The smaller swivels (M4-M6) are constructed of 316 stainless steel and the swivels ranging from 1/8 NPT – 1” NPT are available in 303 stainless steel. The Swivel Fittings allow for movement of 25 degrees from the center axis for a total movement of 50 degrees. This permits correct placement of the blowing angle, helping to optimize the performance of your blowoff process. With no gaskets or seals to wear out, there’s no maintenance required to maintain optimum performance.

Swivel Fittings

Swivels can be used on any of our Air Nozzles up to 1” and can also be used with the Adjustable and Super Air Amplifiers. By simply adding a “W” suffix to the part number, the correctly sized swivel fitting will be added to your order. For example, an 1122W would be one of our 2” Flat Super Air Nozzles with a ¼ NPT male x ¼ NPT female Swivel Fitting included. Stop wasting time trying to find the proper fittings and positioning for your blowoff nozzles! Contact an Application Engineer and get some of EXAIR’s Swivel Fittings on order today, available from stock.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Replacing a 1/4″ Open Copper Tube With a 2″ Flat Super Air Nozzle Leads To Quick ROI

The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility and up to 30% of that compressed air is wasted through inefficient operation. Open pipes or homemade blowoffs waste a ton of compressed air, resulting in high operating costs. By replacing these devices with an energy efficient, engineered solution, you can reduce this waste and dramatically cut energy costs.

For example, let’s look at the average operating costs for a single 1/4″ open copper tube. (If you don’t know you current energy costs, a reasonable average to use is $ 0.25 per every 1,000 SCF used, based on $ 0.08/kWh.

1/4″ Copper tube

A single 1/4″ open copper tube consumes 33 SCFM @ 80 PSIG and costs roughly $ 0.50 per hour to operate. (33 SCF x 60 minutes x $ 0.25 / 1,000 = $ 0.50). For an 8 hour shift, the total cost would be $ 4.00 ($ 0.50 x 8 hours = $ 4.00).

If we were to replace the 1/4″ open copper tube with our Model # 1122 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet, the air consumption would be reduced to 21.8 SCFM @ 80 PSIG. This may not seem like much of an air usage reduction, but when you look at the monetary, total cost of ownership for purchasing and operating the nozzle, the savings can quickly add up.

2″ Flat Super Air Nozzle

The operating cost for a 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet is $ 0.33 per hour (21.8 SCF x 60 minutes x $ 0.25 / 1,000 = $ .033) or $ 2.64 per 8 hour shift ($ 0.33 x 8 hours = $ 2.64).

We can now compare the operational cost between the 2 devices:

1/4″ open copper tube operating costs:
$ 0.50 per hour
$ 4.00 per day (8 hours)

2″ Flat Super Air Nozzle operating costs:
$ 0.33 per hour
$ 2.64 per day (8 hours)

Cost Savings:
$ 4.00 / day (open copper tube) –  $ 2.64 / day (2″ Flat Super Air Nozzle) = $ 1.36 savings per day

The Model # 1122 2″ Flat Super Air Nozzle has a list price $ 67.00 USD.

ROI or Return On Investment calculation:
$ 67.00 (Cost) / $ 1.36 (savings per day) = 49.26 days.

The 2″ Flat Super Air Nozzle would pay for itself in just over 49 days in operation. This is the savings for replacing just ONE 1/4″ open copper tube with an engineered solution! In most industrial plants, there could be several of these which presents even more opportunities to reduce the overall operational costs.

Our focus here at EXAIR is to improve the overall efficiency of industrial compressed air operating processes and point of use compressed air operated products. If you are looking to reduce compressed air usage in your facility, contact an application engineer and let us help you optimize your current system.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Protect Personnel from Noise with Engineered Products

Sound can be defined as vibrations that typically travel as an audible wave through mediums that can be a gas, liquid or solid. For this blog we will concern ourselves with sound travelling through a gas (atmosphere) in an industrial setting.

Sound is energy that travels in waves and is measured by its frequency (cycles per second) and amplitude (intensity). A common unit of measurement for sound energy is the decibel. The decibel (abbreviated with dBA) is a unit-less number that is based on the logarithm of a known measured quantity to a reference quantity. Without reciting the equation for every increase of 3 dBA is a doubling of sound energy or twice as loud.

Since our focus is on industrial sound one might question why be concerned at all, after all sound emanates from most machines and devices. The reason for concern is that there are OSHA regulations regarding the amount of time workers can be exposed to different levels of sound in their workday as illustrated below. These limits are in place to protect personnel from Noise Induced Hearing Loss or NIHL. When the damage to anyones hearing is caused by their profession, it is also referred to as Occupational Hearing Loss or OHL.

After monitoring for noise, NIOSH and the CDC next recommend administrative controls to minimize or eliminate the noise hazard (click for their helpful PDF). This would include the use of noise reducing EXAIR products like Super Air Nozzles, Air Knives and Air Amplifiers.

dBA Chart.JPG
OSHA Maximum Allowable Noise Exposure

When considering the many items in an industrial setting that produce loud sounds the list would be exhaustive. Many of them simply produce loud sounds that can’t be eliminated or reduced while on the other hand there are some that can. Some of the noisiest offenders that plants have control over are air powered tools and open tube blow-offs.  Eliminating inefficient methods of part blow off & part cleaning with an engineered solution allows a company to significantly reduce the level of sound in their plant, improve worker safety and save money on compressed air consumption.

Employers are required to provide hearing protection to employees whom are exposed to sounds above 90 dBA on a Time Weighted Average (TWA). Without digressing into the formulas TWA calculates a workers daily exposure to occupational sounds by taking into account the average levels (in dBA) and the time exposed to different levels.  This is the how OSHA assesses workers exposure and what steps should be taken to protect the workers.

To conclude, plants need to be mindful of the OSHA regulations for sound levels, time of exposure and that hearing protectors wear out. Earmuff seals can lose their elasticity and reduce their effectiveness and the soft pre-molded earplugs can wear out in a day and need replaced.  Keep a good supply on hand and OSHA suggests letting workers with noisy hobbies take them home for protection off the clock!

If you would like to discuss reducing noise or any EXAIR product, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

EXAIR Provides Quick Blowoff Solution for Gauge Manufacturer

I was recently contacted by a manufacturer of custom measurement systems. They were working on a design for a system that could measure (2) different sizes of gears with a high degree of accuracy. A robotic arm would pick up the gear off of a conveyor and deposit it onto a gauge for inspection.

IMG_7328
The two gears being measured

During the initial quoting phase of the project they had been a little misled. They were told that the gears would be completely clean and free of debris before being deposited on the conveyor and picked up for inspection.  It turns out this would not be the case. Chips, oil, or debris remaining on the gear would result in false part rejection. With the required completion date looming, they reached out to EXAIR for some help in implementing a solution to clean the gear before inspection.

While blowing off the oil or chips from the gear was the primary concern, having this debris flying around inside the machine could have been problematic as well. We needed to find a way to contain the chips and remove them. In the process, there was a brief moment that the robot arm held the gauge in place just prior to depositing it onto the gauge. It was there that we identified an opportunity to both clean and remove the chips that were blown off the gear. Using a Model 1105 3/8 NPT Super Air Nozzle and Model 9068 Swivel, they were able to precisely position the blowoff to hit across the bottom of the gear where the chips were located. They then 3D printed a shroud to contain the area where the gauge was held and the blowoff would be performed. They designed the shroud with a 1-1/4” outlet to connect directly to our Model 6082 Line Vac. The intake of the Line Vac was installed right at this point and was set to activate as soon as the air nozzles began their cleaning cycle. The chips were blown off of the gears, contained by the shroud, and taken away to a bin underneath the machine by the Line Vac. The crisis was averted!!

This was the first time they had implemented some type of method to clean the part before measuring. In the past, they had lost potential projects due to the inability for them to provide a clean part for measurement. With this newfound method of part cleaning, they’re now able to be a more complete solutions provider to their customers. They’re able to design the part cleaning feature into the process from the start, rather than retroactively as they had to do here.

6082
Model 6082 Aluminum Line Vac

At EXAIR, we understand how problems can crop up during design and cause potential delays in the completion of a project. For this reason, we keep all of our catalog products in stock and ship same day with an order placed by 3:00 pm EST. This customer was local and was able to call in with a problem, determine a solution, and come pick up their order the same day. If you are having difficulty cleaning or drying machined parts, give us a call. EXAIR has the solution, in stock, ready to ship to you immediately.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD