Super Air Knife Cools Laminated Packaging Material

I recently worked with one of our distributors on a Super Air Knife application for a manufacturer of flexible packaging material. They create the plastic material that is commonly wrapped around the outside of a wide variety of different containers. The material exits the laminating machine at about 129°F (54°C) and must be cooled to close to room temperature before it is able to be rolled without the material sticking together.

IMG_20180509_103254_HDR
Model 110012, positioned to maximize counter-flow

They performed a test with a Model 110012, recording the temperature after the knife and determined that it would be suitable for them. Prior to using the Super Air Knife, they had been using a series of fans to cool down the material. This worked to some degree, but they had been experiencing quality issues as a result of inadequate levels of cooling and were forced to slow down the laminating machine in order to compensate. By implementing the Super Air Knife, they were able to cool the material down to ambient temperatures without having to slow production. As an added measure, they ordered a second knife to install on the underside to further decrease the temperature of the material.

sak_cooling
Graph showing the effectiveness of a Super Air Knife vs. fans or no cooling method.

The laminar airflow of the Super Air Knife is critical to the success of any cooling application. A fan “slaps” the air which provides random spikes of air at moderate velocities. The uniform, high velocity, laminar sheet of air from the Super Air Knife, in addition to the low compressed air consumption, makes it a much more effective cooling method than fans. The design of the Super Air Knife allows it to entrain ambient air at a rate of 40:1, maximizing the force and flow from the knife while keeping compressed air usage to a minimum.

super-air-knife-flow
The design of the Super Air Knife allows it to entrain air from the top and bottom, creating a 40:1 air amplification ratio.

Super Air Knives are available in a range of different materials and sizes. From stock EXAIR carries knives from 3”-108” in Aluminum, 303 Stainless Steel, 316 Stainless Steel, and 3”-54” in PVDF (Polyvinylidene Fluoride) for superior resistance to highly corrosive materials. In addition to being an excellent tool for cooling, the Super Air Knife can solve a wide range of drying and blowoff applications. If you have an application that would be better served with one of EXAIR’s Super Air Knives, reach out to us today and get yours on order! We ship same day from stock with orders received by 3:00 pm EST, stop wasting time with ineffective cooling or blowoff methods!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Super Air Knife Coupling Kit Helps Customer Save Money and Increase Productivity!

I was recently contacted by a manufacturer of specialty food products that was looking to increase productivity on one of their packaging lines. In order to do so, they needed a longer Super Air Knife.

SS SAK cheese.jpg cropped
Model 110012SS-316 Super Air Knife

They manufacture a variety of different products, but this application was involving small snack-size blocks of cheese. They’re placed into individual plastic containers and before they seal the packaging any residual particles must be blown off or it will affect the seal. Any residual particles of cheese around the container would allow air to come into contact with the product and affect shelf-life.

In the current setup, they were using EXAIR’s Model 110012SS-316 a 12” 316 grade Stainless Steel Super Air Knife and the Model 9060 Universal Mounting System. They wanted to add in an additional two rows of cheese to help increase throughput. To do so, he needed an overall width of 18”. We do have an 18” available from stock, but rather than having a spare 12” model lying around he wanted to try and utilize what he had without having to purchase an entirely new knife.

uakmb
Model 9060 Universal Mounting System

Fortunately, EXAIR’s Super Air Knives can be coupled together to create a wide variety of different lengths. From stock, the Super Air Knife is available from 3”-108”. With the help of a Super Air Knife Coupling kit, we can achieve much longer lengths. In this case, although we did have an 18” knife available, we could also couple the existing 110012SS-316 (12”) with our Model 110006SS-316 (6”). This option was a bit cheaper than going with a new knife, and still allowed them to utilize the 12” that they already had.

gh_Super Air Knife Coupling Kit 750x696
Coupling Kit for Aluminum Super Air Knives

While this isn’t the typical place we’d recommend a coupling kit, it was an option that allowed the customer to save a bit of money but still get the same effect that they’d achieve with the 18” single piece knife. We also manufacture a wide variety of custom knives per customer specifications. If you’ve got an odd application that you don’t think is best served by a stock offering, give us a call. An Application Engineer will be happy to take a look at your application and help recommend the most suitable product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Super Air Knife with a Plumbing Kit Removes Gypsum from a Conveyor Belt

Plumbing Kits

A gypsum facility was having issues in losing powder from the tailings in their conveying system.  The conveyor moved gypsum from their processing plant to an outside silo bin location for loading and transportation.  The conveyor that they used was 60” wide.  As the conveyor went around the end to dump the gypsum powder, some of the material would stick to the belt and collect on the floor underneath.  Depending on production rates, they would have to stop the operation to clean up the floor which added additional hours for custodial work.  The customer sent a picture of the problem and wondered if EXAIR could help them with this application.

The facility did an annual cost projection to determine the loss of money from the gypsum material collecting under the conveyor.  The custodial cost to clean up the excess powder was roughly $45,000/year.  The unscheduled downtime was estimated at 115 hours per year.  (They did not share the loss of dollars in production to EXAIR.)  But it was large enough that they needed a solution from EXAIR.  (The photo below is similar to the same application as written by Lee Evans: “EXAIR Super Air Knives Improve Process in an Aluminum Rodding Shop“.)

Powder collecting under conveyor

I suggested a model 110260PKI Super Air Knife Kit for this application.  The Super Air Knife was 60” in length to cover the conveyor belt.  The kit included a filter, a regulator, and a shim set to “dial” in the minimum amount of force to remove the material.  This gives the customer the most flexibility when using an EXAIR Super Air Knife.  The “PKI” suffix at the end of the model number indicates our Plumbing Kit.  This kit which is Installed on the Super Air Knife allows for ease of installation to compressed air connections and it also allows for the proper airflow to get a consistent blow-off across the entire length of the Super Air Knife.

At EXAIR, we pride ourselves in energy efficiency.  Compressed air is expensive to make, so why not use it as efficiently as you can?  The Super Air Knife has a 40:1 amplification ratio which allows 40 parts of ambient “free” air for every 1 part of compressed air.  And, with the “dirty” environment at the gypsum facility, the Super Air Knife would not be affected as they do not require a motor that can fail or a maintenance program to perform.  After installing the model 110260PKI, the gypsum powder was no longer collecting on the floor underneath.  If we look at the cost of removing the hourly rate of the custodian, the Return on Investment, ROI, was only 27 days (and this did not include the increase in production rates).

Spillage is wasteful, costly, and time consuming to cleanup.  If you have excess waste from your conveying system, EXAIR will have the product to help you.  For the gypsum facility above, the Super Air Knife Kit made it possible to increase production efficiencies with a short ROI.  You can contact an Application Engineer to review your application and see if we can improve your conveying operation.

John Ball

Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Super Air Knife Cleans Baking Pans

A few weeks back I was contacted by a large baking company who was looking for a better way to pre-clean their cake and muffin pans before sending them to a wash cycle. After the pans exit the oven, an operator places the baked goods on a cooling conveyor then uses an air gun to blow out the residual crumbs. The pans are then placed on a separate conveyor and sent through a washer. The manual operation was taking a lot of extra time which resulted in reduced production.

Muffin Pan

After further discussion, I recommended they use our 24″ Super Air Knife. The Super Air Knife produces an even, high velocity curtain of air across the entire length of the knife which would provide a uniform blowoff of the pans, eliminating the manual cleaning.  Super Air Knives are extremely efficient and quiet. Operating at 80 PSIG, using a 40:1 amplification rate of entrained ambient air to compressed air consumed, they require only 2.9 SCFM per inch of knife length while maintaining a low sound level of only 69 dBA and produce a velocity of 11,800 feet per minute.

Efficient way to clean, dry or cool parts, webs or conveyors.

The Super Air Knives are available in lengths from 3″ up to 108″ in single-piece construction and offered in aluminum, 303ss or 316ss construction, they are the perfect choice for small scale or wide coverage blowoff applications. To discuss a particular application or for help selecting the best EXAIR product to fit your need, contact an application engineer at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Muffins Anyone? photo courtesy of Amy via creative commons license.

How a Super Air Knife Helps with Metal Etching

Etching Machine

A company had a process where they were etching metal components with an acid bath.  The system consisted of four baths where the metal parts would be dipped.  The four baths consisted of a wash, rinse, acid bath, and rinse again.  The automated system was contained inside an enclosed booth; and, once the parts were placed inside a 24” (610mm) X 18” (457mm) basket, a sliding door was closed to initiate the operation.  The timing sequence consisted of the basket being dipped into each bath for a certain length of time.  Between each bath cycle, the basket would be raised above the solution, and an open pipe blow-off would remove excess liquid from the part with compressed air.   They complained that the parts were not getting dry enough, and cross-contamination was causing process problems.  The acid bath was becoming more neutral and the effectiveness of the etching was being sacrificed.  The rinse water was becoming more “soapy” after the cleaning bath and more acidic after the acid bath.  Overall, they had to replace every one of the bath solutions which caused shut-downs and extra expense.

From similar applications, I was able to recommend a great solution.  Because of the acidic solution and corrosive environment, I recommended two stainless steel Super Air Knives, model 110024SS.  They are manufactured in 303 stainless steel.  EXAIR also offers 316 stainless steel as well as PVDF for more acidic or caustic etching.  Instead of using the open pipes to blow off the parts, the customer could replace them with the Super Air Knives.  They can easily be mounted above the front and back of the basket, blowing at a downward angle toward the dip tank.  The two Super Air Knives would remove the liquid solution from the parts as well as the basket to put back into the same dipping tank.  The more solution that is removed, the less liquid that will transfer from one solution to the next; thus, reducing cross-contamination dramatically.

After installing the model 110024SS Super Air Knives in their system, they started to see a vast improvement in their etching process.  The etching acid was able to be used roughly 40% longer as compared to the prior method.  As an added feature, the Super Air Knives decreased the time to blow off the parts as they can be adjusted for optimum cleaning.  Less waste and faster production times were how the EXAIR Super Air Knives helped the customer above.  If you have a similar application and want to discuss how we can improve your dipping process, please speak to one of our Application Engineers.  We’ll be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

ROI – Is it Worth the Investment?

Any time you’re planning to purchase something, the return on investment (ROI) is an important thing to consider. Whether you’re considering buying new windows to improve on your heating and cooling costs, looking at replacing outdated appliances with newer and more efficient models, or purchasing an Intelligent Compressed Air Product, how quickly that product will pay for itself can help you to make the right decision.

coins

Last year, my wife and I purchased our first home. In the backyard, was a nice, big in-ground pool. While it was something we did look for, it requires a bit of maintenance during the summer months to keep the water clear and things running smoothly. Who wants to swim in a pool ridden with dirt, leaves, bugs, and debris floating around? Certainly not me, which meant I needed to spend some time brushing the sides of the pool and vacuuming to keep everything clean. For our first season, we elected to tackle this task manually. Not only was this time consuming, but it was also not very effective. To brush the sides and steps, skim, and vacuum took about 2 hours each time. I was doing this 2x per week to keep everything looking good. Over the course of a 15-week pool season here in Southwest Ohio, I spent approximately 60 hours just keeping the pool clean.

We were interested in the robotic pool vacuums available at our local pool supply store, but we balked at the initial price of them. After spending all this time doing it myself, I began to think that it would pay for itself relatively quickly (depending on how much I valued my own labor 😊). Allocating the cost of the robotic vacuum over the six-year life expectancy, as well as taking into consideration how much time I had spent cleaning the previous year, made this decision much more palatable. We went ahead, bit the bullet, and purchased one for this season. I must say, just two weeks in and my pool is cleaner than it ever was last year. We’ve only run it twice!! It only takes 5 minutes to connect and drop in. I reduced my time spent from 4 hours per week to 10 minutes per week. Consider me a happy consumer.

If you follow the EXAIR Blog, you’ll know that one of our primary focuses is saving customers money by reducing their compressed air operating cost. Recently, I wrote a blog post about a customer that replaced an inefficient solution with some EXAIR Super Air Knives. Let’s take a look and see how quick these knives were able to pay for themselves:

The previous solution consisted of (3) nozzles operated at 50 psig, consuming a total of 51 SCFM. This line was run continuously for (1) 8-hour shift, (5) days per week. The average cost for compressed air is $0.25 per 1,000 SCF (based on $0.08/kWh).

51 SCFM x 60 mins x 8-hours x $0.25/1000 = $6.12 per day

Replacing the inefficient nozzles with (3) Model 110003 Super Air Knives reduced the overall consumption to 17.1 SCFM when operated at 50 psig.

17.1 SCFM x 60 mins x 8-hours x $0.25/1000 = $2.05 per day

This led to a total savings of $4.07 per day, just by swapping out the inefficient product with the EXAIR Super Air Knives. So how quickly will they pay for themselves? Each Model 110003 Super Air Knife carries a list price of $199.00. Since we were using (3) on each line, their total investment per line was $597.00 USD.

$597.00/4.07 = 146.68 (147 days)

KIMG0161
Inefficient blowoff

On the 147th day (less than 30 weeks, based on a 5-day workweek), the Super Air Knives have paid for themselves. Afterward, that $4.07/day/line goes straight to the bottom line. You’ll be hard pressed to find many products that will pay for themselves in less than one year, but at EXAIR we see this day in and day out. Stop throwing your money out the window with inefficient compressed air solutions. Reach out to an EXAIR Application Engineer and see how quickly your blowoffs can start paying YOU.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Little things add up image courtesy of Nic McPhee via creative commons license

EXAIR’s Industry Leading Super Air Knife Saves You Money

One common application that we get calls for each and every day centers around maximizing compressed air efficiency. I recently got to work with a customer who was using an inefficient blowoff method and was looking to replace it with an engineered compressed air solution. They had a total of (8) extrusion lines, each with (3) modular-hose style flat nozzles installed. Before a cooling bath they had one nozzle remove some of the heat, then as the extruded material exits the water bath another (2) nozzles blowoff any residual water. They were maxing out their compressor’s peak operating capacity and pressure drops across the system were causing problems elsewhere in other processes.

KIMG0161

They were operating each of the flat nozzles at 50 psi using a total of 17 SCFM per nozzle. We first calculated how much air the current method was using. The extrusion lines were run for one full 8-hr shift per day:

17 SCFM/nozzle x 3 nozzles/line = 51 SCFM per extrusion line

51 SCFM x 60 mins x 8hrs x 5 days x 50 weeks = 6,126,000 SCF

The extrusion lines accommodated product that ranged from 1”-2.5” wide. They wanted one single solution to use across all different products. We settled on (3) of our 110003 3” Super Air Knives. Let’s take a look at the compressed air requirement for (3) 110003 Super Air Knives, also operated at 50 psig.

A Super Air Knife will consume 1.9 SCFM/inch when operated at 50 psig:

1.9 SCFM/inch x 3 inches (per knife) = 5.7 SCFM/knife

5.7 SCFM x (3) total knives = 17.1 SCFM

17.1 SCFM x 60 mins x 8hrs x 5 days x 50 weeks = 2,052,000 SCF

Total savings per extrusion line – 6,126,000 SCF – 2,052,000 SCF = 4,074,000 SCF

4,074,000 SCF x 8 extrusion lines = 32,592,000 SCF

By replacing the (3) inefficient nozzles with EXAIR’s Super Air Knives, a whopping 4,074,000 SCF of compressed air is saved each year. With (8) total lines, this equates to a total of 32,592,000 SCF of compressed air. Most companies will know the cost of their compressed air usage per CFM, but a cost of ($0.25/1000 standard cubic feet) is a good baseline to use.

($.25/1000 SCF) x 32,592,000 SCF = $8,148.00 USD

By replacing (3) inefficient nozzles across all (8) extrusion lines with EXAIR’s industry leading Super Air Knife, they were able to save a total of $8,148.00 per year. In as little as (6) months, the Super Air Knives will have already paid for themselves!!

If you’ve been maxing out your compressed air system, don’t necessarily assume you need to increase your overall capacity. Put in a call to an EXAIR Application Engineer and we can take a closer look at the ways your using your compressed air throughout the facility. By replacing some inefficient methods with an engineered solution, we can help you save air and money!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD