Thinking Outside of the Box

Over the years of working at EXAIR, I have spoken to thousands of customers. The applications we discuss can run the full range that is showcased in the Solutions section of our website. It is always fun to approach applications when we have to think outside of the box for a solution. Throughout the Application Engineering department, our level of experience here combined with the customer’s knowledge of their setup, sometimes results in a solution that is not straightforward. Sometimes, we have to think outside of the box.

What kind of application may we have encountered where the obvious solution wasn’t the one that worked? One of the best applications that came to mind for me is when a customer was attempting to lift/pick up a very porous piece of filter media like the pre-filter from a Heavy Duty HEPA Vac. This material is extremely lightweight and porous. When hearing from a customer, I want to pick this material up, my mind quickly goes to the E-Vac Vacuum generators which are used to generate vacuum to operate suction cups.

In-Line E Vac picking up a block of cut extrusion.

With this material however, the vacuum flow needed is quite extensive and there is another product which is going to be a more efficient use of compressed air. That product, the Super Air Amplifier. As you can see in the photo below, a 2″ Super Air Amplifier easily lifts the porous material and because the suction side is a nominal hose size a hose can easily be attached if needed. The image shows a single amplifier lifting a larger sheet from a bench, these could be organized in an array like suction cups to pick materials up.

Model 120022 – 2″ Super Air Amplifier picking up a porous pre-filter material.

The moral of the story is to keep an open mind for solutions, while one path will always work other paths may become a more efficient manner. These solutions don’t always fit inside a box nice and neat. The Super Air Amplifier fit this because the amount of air entrained is tremendous and can easily be utilized to pull low vacuum force/high flow applications. This is very similar to fume evacuation which would be a “normal” application for the Super Air Amplifier.

If you want to discuss any point of use compressed air application with us, contact an Application Engineer and let us help you determine the solution your job needs.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Customizing Air Amplifiers

EXAIR’s line of Air Amplifiers can be found in a multitude of different applications across the world. They solve problems as simple as blowing debris off parts to exhausting fumes or circulating air. The Air Amplifier comes in two different styles either the Super Air Amplifier or the Adjustable Air Amplifier. Super Air Amplifiers come in a stock Aluminum Body with a diameter that ranges from ¾” to 8”. This differs from the Adjustable Air Amplifier which comes in either type 303 Stainless Steel or Aluminum and are Sized from ¾” to 4”.

The main difference between the Super Air Amplifier and the Adjustable Air Amplifier is the fact the Super Air Amplifier has a shim inside of it that sets the gap for the air flow. The standard shim thickness for the Super Air Amplifier in sizes of 3/4″ to the 4″ is 0.003” which is suitable for most applications. These shims can be exchanged for a thicker shim of thickness of either 0.006″ or 0.009″. The 8″ Super Air Amplifier is the only air amplifier that comes with a standard stock shim of 0.009″ and can be exchanged for a 0.015″ shim if needed.

Flanged Stainless Steel Adjustable Air Amplifier
Sanitary Flanged Adjustable Air Amplifier

Even though there is a wide variety of sizes and materials for the Stock Air Amplifiers they may not meet a customer’s specific application or need. Over the years EXAIR has produced many different custom Air Amplifiers for a customer’s specific need and the images throughout this blog are just a few of what we have done.

High Temp Air Amplifier

• Depending on the environment certain specific materials may be required like the food industry which requires specific Stainless Steel for various applications. One customer had a special PTFE plug made for the Adjustable Air Amplifier to help pull a sticky material through the process. The PTFE helped prevent the material form depositing on the Amplifier.
• For applications were mounting may be an issue, special attachments have been made to assist. For instances were an Amplifier may need to be mounted to a pipe a custom Stainless-Steel Adjustable Air Amplifier with a class 150 raised face flanges.
• Applications that are in a hot environment may require a special high temperature version which has be developed to operate in areas up to 700°F. The High Temperature Air Amplifier was so widely sought after that we turned it into a stock item. It is commonly used in large roto-molds and ovens to circulate air in order to maintain consistent temperatures.

Adjustable Air Amplifier with PTFE Plug Installed

No matter what your application needs are EXAIR will to work with you to create any custom Air Amplifier that fits your specific application needs.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Air Amplifiers – Air Pressure or Air Flow Volume

When talking about Air Amplifiers there are two (2) kinds when considering what best fits your needs. An amplifier that is used to increase pressure above your compressor’s ability are also known as air boosters. These boosters are sometimes needed for specific processes which demand much higher pressures. Amplifiers that increases the volume flow rate of your compressed air or nitrogen are the type of amplifier that EXAIR manufactures. 

EXAIR’s Super Air Amplifiers will increase the volume of air on to a target or being circulated in an environment. EXAIR’s Air Amplifiers use the Coanda effect pulling in large volumes of surrounding air to produce high volume, high velocity outlet flows up to 25 times their consumption rate.

Air Amplifiers have no moving parts and are basically maintenance free. EXAIR’s amplifiers operate on a source of clean compressed air and do not use electricity. The outlet flows are easily adjusted by opening or closing the air gap. By regulating the supply pressure you can tune in your outlet flow to meet your specific needs. Vacuum and discharge ends of the Air Amplifier can be ducted, making them ideal for drawing fresh air from another area or for moving smoke and fumes away.

Super Air Amplifier Family

EXAIR has 5 standard sized Air Amplifiers ranging from 3/4″ (19mm) to 8″ (203mm) plus an Adjustable Air Amplifier . If you have a specific application EXAIR can manufacture Air Amplifiers to fit your application. If you have a project and think EXAIR’s Air Amplifier or any of our Intelligent Compressed Air Products please contact me or any of our qualified Application Engineers to discuss your project.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Entrainment: What is it?

By definition, entrainment is a form of the verb, entrain, which is fluid that is swept along into an existing moving flow.   Whenever there is a discussion about fluid dynamics, the Bernoulli’s equation generally comes up.  This equation is unique as it relates flow energy with kinetic energy and potential energy.  The formula was mainly linked to incompressible fluids, but under certain conditions, it can be significant for gas flows as well.  I would like to discuss how EXAIR uses the Bernoulli’s equation for entrainment to maximize efficiency within your compressed air system.

This relationship between pressure as compared to flow and velocity came to be known as the Bernoulli’s principle.  “In fluid dynamics, Bernoulli’s principle states that an increase in the speed of fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluids potential energy”1. Bernoulli realized that the sum of kinetic energy, flow energy, and potential energy is a constant during steady flow.  He wrote the equation like this:

Equation 1:

P/r + V2/2 + gz = constant

P – Pressure

r – density

V – velocity

g – gravitational constant

z – height difference

 

Not to get too technical, but you can see the relationship between the velocity squared and the pressure from the equation above.  Being that this relationship is a constant along the streamline; when the velocity increases; the pressure has to come down.  An example of this is an airplane wing.  When the air velocity increases over the top of the wing, the pressure becomes less.  Thus, lift is created and the airplane flies.

Since we know the criteria to apply the Bernoulli’s equation with compressed air, let’s look at some EXAIR products.  Blowing compressed air to cool, clean, and dry, EXAIR can do it very efficiently as we use the Bernoulli’s principle to entrain the surrounding air.  Remember from the equation above, as the velocity increases, the pressure has to decrease.  When the pressure decreases, the surrounding air will move toward the low pressure.  That low pressure will sweep the ambient air into the air stream; called entrainment.

Compressed air is expensive, but the ambient air is free.  The more ambient air we can entrain, the more efficient the blowing device is.  As an example, we engineer the Super Air Knife to maximize this phenomenon to give an amplification ratio of 40:1. So, for every 1 part of compressed air, the Super Air Knife will bring into the air streamline 40 parts of ambient “free” air.  This makes the Super Air Knife one of the most efficient blowing devices on the market.  By adding mass to the flow stream, it will reduce the compressed air usage, saving you money, and allow for better cooling and a stronger blowing force.  For a drilled pipe, the amplification ratio is generally only two to three times.

We use this principle for many of our products like the Air Amplifiers, Safety Air Guns, Air Nozzles, Air Knives, and Gen4 Static Eliminators. Daniel Bernoulli was able to find a relationship between velocities and pressures, and EXAIR was able to use this to create efficient, safe, and effective compressed air products.  To find out how you can use this advantage to save compressed air in your processes, you can contact an Application Engineer at EXAIR.  We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

  1. Wikipedia https://en.wikipedia.org/wiki/Bernoulli%27s_principle