Replacing a 1/4″ Open Copper Tube With a 2″ Flat Super Air Nozzle Leads To Quick ROI

The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility and up to 30% of that compressed air is wasted through inefficient operation. Open pipes or homemade blowoffs waste a ton of compressed air, resulting in high operating costs. By replacing these devices with an energy efficient, engineered solution, you can reduce this waste and dramatically cut energy costs.

For example, let’s look at the average operating costs for a single 1/4″ open copper tube. (If you don’t know you current energy costs, a reasonable average to use is $ 0.25 per every 1,000 SCF used, based on $ 0.08/kWh.

1/4″ Copper tube

A single 1/4″ open copper tube consumes 33 SCFM @ 80 PSIG and costs roughly $ 0.50 per hour to operate. (33 SCF x 60 minutes x $ 0.25 / 1,000 = $ 0.50). For an 8 hour shift, the total cost would be $ 4.00 ($ 0.50 x 8 hours = $ 4.00).

If we were to replace the 1/4″ open copper tube with our Model # 1122 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet, the air consumption would be reduced to 21.8 SCFM @ 80 PSIG. This may not seem like much of an air usage reduction, but when you look at the monetary, total cost of ownership for purchasing and operating the nozzle, the savings can quickly add up.

2″ Flat Super Air Nozzle

The operating cost for a 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet is $ 0.33 per hour (21.8 SCF x 60 minutes x $ 0.25 / 1,000 = $ .033) or $ 2.64 per 8 hour shift ($ 0.33 x 8 hours = $ 2.64).

We can now compare the operational cost between the 2 devices:

1/4″ open copper tube operating costs:
$ 0.50 per hour
$ 4.00 per day (8 hours)

2″ Flat Super Air Nozzle operating costs:
$ 0.33 per hour
$ 2.64 per day (8 hours)

Cost Savings:
$ 4.00 / day (open copper tube) –  $ 2.64 / day (2″ Flat Super Air Nozzle) = $ 1.36 savings per day

The Model # 1122 2″ Flat Super Air Nozzle has a list price $ 67.00 USD.

ROI or Return On Investment calculation:
$ 67.00 (Cost) / $ 1.36 (savings per day) = 49.26 days.

The 2″ Flat Super Air Nozzle would pay for itself in just over 49 days in operation. This is the savings for replacing just ONE 1/4″ open copper tube with an engineered solution! In most industrial plants, there could be several of these which presents even more opportunities to reduce the overall operational costs.

Our focus here at EXAIR is to improve the overall efficiency of industrial compressed air operating processes and point of use compressed air operated products. If you are looking to reduce compressed air usage in your facility, contact an application engineer and let us help you optimize your current system.

Justin Nicholl
Application Engineer

Protect Personnel from Noise with Engineered Products

Sound can be defined as vibrations that typically travel as an audible wave through mediums that can be a gas, liquid or solid. For this blog we will concern ourselves with sound travelling through a gas (atmosphere) in an industrial setting.

Sound is energy that travels in waves and is measured by its frequency (cycles per second) and amplitude (intensity). A common unit of measurement for sound energy is the decibel. The decibel (abbreviated with dBA) is a unit-less number that is based on the logarithm of a known measured quantity to a reference quantity. Without reciting the equation for every increase of 3 dBA is a doubling of sound energy or twice as loud.

Since our focus is on industrial sound one might question why be concerned at all, after all sound emanates from most machines and devices. The reason for concern is that there are OSHA regulations regarding the amount of time workers can be exposed to different levels of sound in their workday as illustrated below. These limits are in place to protect personnel from Noise Induced Hearing Loss or NIHL. When the damage to anyones hearing is caused by their profession, it is also referred to as Occupational Hearing Loss or OHL.

After monitoring for noise, NIOSH and the CDC next recommend administrative controls to minimize or eliminate the noise hazard (click for their helpful PDF). This would include the use of noise reducing EXAIR products like Super Air Nozzles, Air Knives and Air Amplifiers.

dBA Chart.JPG
OSHA Maximum Allowable Noise Exposure

When considering the many items in an industrial setting that produce loud sounds the list would be exhaustive. Many of them simply produce loud sounds that can’t be eliminated or reduced while on the other hand there are some that can. Some of the noisiest offenders that plants have control over are air powered tools and open tube blow-offs.  Eliminating inefficient methods of part blow off & part cleaning with an engineered solution allows a company to significantly reduce the level of sound in their plant, improve worker safety and save money on compressed air consumption.

Employers are required to provide hearing protection to employees whom are exposed to sounds above 90 dBA on a Time Weighted Average (TWA). Without digressing into the formulas TWA calculates a workers daily exposure to occupational sounds by taking into account the average levels (in dBA) and the time exposed to different levels.  This is the how OSHA assesses workers exposure and what steps should be taken to protect the workers.

To conclude, plants need to be mindful of the OSHA regulations for sound levels, time of exposure and that hearing protectors wear out. Earmuff seals can lose their elasticity and reduce their effectiveness and the soft pre-molded earplugs can wear out in a day and need replaced.  Keep a good supply on hand and OSHA suggests letting workers with noisy hobbies take them home for protection off the clock!

If you would like to discuss reducing noise or any EXAIR product, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

EXAIR Provides Quick Blowoff Solution for Gauge Manufacturer

I was recently contacted by a manufacturer of custom measurement systems. They were working on a design for a system that could measure (2) different sizes of gears with a high degree of accuracy. A robotic arm would pick up the gear off of a conveyor and deposit it onto a gauge for inspection.

The two gears being measured

During the initial quoting phase of the project they had been a little misled. They were told that the gears would be completely clean and free of debris before being deposited on the conveyor and picked up for inspection.  It turns out this would not be the case. Chips, oil, or debris remaining on the gear would result in false part rejection. With the required completion date looming, they reached out to EXAIR for some help in implementing a solution to clean the gear before inspection.

While blowing off the oil or chips from the gear was the primary concern, having this debris flying around inside the machine could have been problematic as well. We needed to find a way to contain the chips and remove them. In the process, there was a brief moment that the robot arm held the gauge in place just prior to depositing it onto the gauge. It was there that we identified an opportunity to both clean and remove the chips that were blown off the gear. Using a Model 1105 3/8 NPT Super Air Nozzle and Model 9068 Swivel, they were able to precisely position the blowoff to hit across the bottom of the gear where the chips were located. They then 3D printed a shroud to contain the area where the gauge was held and the blowoff would be performed. They designed the shroud with a 1-1/4” outlet to connect directly to our Model 6082 Line Vac. The intake of the Line Vac was installed right at this point and was set to activate as soon as the air nozzles began their cleaning cycle. The chips were blown off of the gears, contained by the shroud, and taken away to a bin underneath the machine by the Line Vac. The crisis was averted!!

This was the first time they had implemented some type of method to clean the part before measuring. In the past, they had lost potential projects due to the inability for them to provide a clean part for measurement. With this newfound method of part cleaning, they’re now able to be a more complete solutions provider to their customers. They’re able to design the part cleaning feature into the process from the start, rather than retroactively as they had to do here.

Model 6082 Aluminum Line Vac

At EXAIR, we understand how problems can crop up during design and cause potential delays in the completion of a project. For this reason, we keep all of our catalog products in stock and ship same day with an order placed by 3:00 pm EST. This customer was local and was able to call in with a problem, determine a solution, and come pick up their order the same day. If you are having difficulty cleaning or drying machined parts, give us a call. EXAIR has the solution, in stock, ready to ship to you immediately.

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

Measuring and Adding Sounds


My colleague, Russ Bowman, wrote a blog about “Sound Power Level and Sound Pressure”.  He discussed the logarithmic equations around sound.  I will be discussing what happens when you have more than one sound source, as often heard within manufacturing plants.  Sounds can be added together to determine the overall sound level that your hear.  This is very important when it comes to minimizing hearing loss.

In looking at a single source of sound, sound pressure is created by the loudness of a noise.  The units are measured in Pascals.  The lowest pressure perceived by human hearing is 0.00002 Pa, and we can use this value as a reference point.  From sound pressures, we can arrive to a sound pressure level which is measured in decibel, dB.  This correlation between sound pressures and sound pressure levels are calculated by Equation 1:



L – Sound Pressure Level, dB

P – Sound pressure, Pa

Pref – reference sound pressure, 0.00002 Pa

As an example, the sound pressure from a passenger car as heard from the roadside is 0.1 Pa.  With Equation 1, we can get the following decibel level:

L = 20 * Log10 (0.1Pa/0.00002Pa) = 74 dB

Because human ears are sensitive to different frequencies, the sound pressure levels can be modified, or weighted, to indicate an effective loudness level for humans.  This adjustment is done in two different ways; A-weighting and C-weighting.  The C-weighting is for very loud noises with high peaks or sharp impacts like gunfire. The A-weighting is the most commonly used value as the sound pressure levels are adjusted by the frequency level.  For higher and lower frequencies, the change in the sound value is much greater than the mid-level frequencies that are within our hearing range.  Sound measurements for safety are measured in the A-weighted scale.  OSHA created a chart in the 29CFR-1910.95(a) standard that shows the noise levels over exposure times for an operator.  To use the OSHA chart accurately, the total noise level in dBA should be calculated.

OSHA Chart

To determine the total sound level, we can add all the sound pressure levels together by Equation 2:



Where L1, L2… represents the sound pressure level in dBA for each sound source.

As an example, a manufacturing plant had an operator using a machine that had four copper tubes to blow off a cutting operation (reference photo below).

Blow off station

The decibel level for a copper tube was measured at 98 dBA.  The total amount of sound that the operator was exposed to was determined by Equation 2 with four values.

L = 10 * log10 (109.8 + 109.8 + 109.8 + 109.8)

L = 104 dBA

In looking at the OSHA chart, the operator would only be allowed to operate the machine only a little over one hour without hearing protection.  In this same example, we replaced the copper tubes with an EXAIR Super Air Nozzle, model 1110SS.  The noise level for each nozzle is 74 dBA.  By replacing all four copper tubes with Super Air Nozzles, Equation 2 becomes:

L = 10 * log10 (107.4 + 107.4+ 107.4 + 107.4)

L = 80 dBA

The total sound level is now in accordance with OSHA regulations for the operator to work all 8 hours at the machine without hearing protection.

A commonly used acronym in hearing safety is NIHL, or Noise Induced Hearing Loss.  To keep your operators safe and reduce NIHL, it is important to measure the total sound level.  As a protocol in safety, it is a requirement to use engineering standards before purchasing personal protective equipment or PPE.  For the customer above, they followed that protocol with our Super Air Nozzles.  If you need to reduce noise levels in your facility by engineering standards, EXAIR offers a large line of blow-off products that can meet the safety requirements.


John Ball
Application Engineer
Twitter: @EXAIR_jb


Photo of Ear auricle Listen by geraitCC0 Create Commons.


Intelligent Compressed Air: Utilization of the Coanda Effect

Henri Coanda was a Romanian aeronautical engineer most known for his work developing what is today known as the Coanda effect. The Coanda effect is the propensity of a fluid to adhere to the walls of a curved surface. A moving stream of fluid will follow the curvature of the surface rather than continuing to travel in a straight line.  This effect is used in the design of an airplane wing to produce lift. The top of the wing is curved whereas the bottom of the wing remains straight. As the air comes across the wing, it adheres to the curved surface, causing it to slow down and create a higher pressure on the underside of the wing. This  is referred to as lift and is what allows an airplane to fly.


The Coanda effect is also the driving force behind many of EXAIR’s Intelligent Compressed Air Products. Throughout the catalog you’ll see us talking about air amplification ratios. EXAIR products are designed to take advantage of this phenomenon and entrain ambient air into the primary air stream. Compressed air is ejected through the small orifices creating air motion in their surroundings. Using just a small amount of compressed air as the power source, Super Air Knives, Air Nozzles, and Air Amplifiers all draw in “free” ambient air amplifying both the force and the volume of airflow.

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Super Air Knives provide the greatest amount of air amplification at a rate of 40:1, one part being the compressed air supply and 40 parts ambient air from the environment. The design of the Super Air Knife allows air to be entrained at the top and bottom of the knife, maximizing the overall volume of air. Super Air Nozzles and Super Air Amplifiers also use this effect to provide air amplification ratios of up to 25:1, depending on the model.

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

The patented shim design of the Super Air Amplifier allows it to pull in dramatic amounts of free surrounding air while keeping sound levels as low as 69 dBA at 80 psig! The compressed air adheres to the Coanda profile of the plug and is directed at a high velocity through a ring-shaped nozzle. It adheres to the inside of the plug and is directed towards the outlet, inducing a high volume of surrounding air into the primary air stream. Take a look at this video below that demonstrates the air entrainment of a Super Air Amplifier with dry ice:

Utilizing the Coanda effect allows for massive compressed air savings. If you would like to discuss further how this effect is applied to our Super Air Knives, Air Amplifiers, and Air Nozzles give us a call. We’d be happy to help you replace an inefficient solution with an Engineered Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

EXAIR Heavy Duty Safety Air Gun With Accessories Improves Effectiveness and Safety

Model 1310-12 Heavy Duty Safety Air Gun, With 12″ Extension & 1100 Super Air Nozzle

In rugged industrial environments the EXAIR Heavy Duty Safety Air Gun delivers powerful blasts of compressed air right where it is needed.  It features a 3/8 NPT metal inlet to allow for increased air flow to the Super Air Nozzle of your choice and there are many configurations are available from stock.  It is constructed of a durable and robust cast aluminum body with an ergonomic and comfortable composite grip that allows for extended use without fatigue.

The Heavy Duty Safety Air Gun can be configured with extensions that are available in 6” increments up to 24” in length and 12” increments from 24” up to 72”.  Combine the extension with our optional Chip Shield for maximum operator safety and comfort.


Extension Tubes For Air Guns
Different Length Extensions For Every Application


Chip Shield
Chip Shields Offer Safety & Comfort For Operators

We offer a wide variety of nozzles to allow you to configure the Heavy Duty Safety Air Gun to you specific application.  EXAIR has a large selection of nozzles that are engineered to entrain surrounding air with the compressed air supply creating a synergistic blast that is very powerful.  Most importantly they operate much quieter than the limits of OSHA standard 29 CFR 1910.95(a) and can’t be “dead ended” therefore meeting OSHA standard 29 CFR 1910.242(b).

OSHA Chart
OSHA Maximum Allowable Noise Exposure


The EXAIR Heavy Duty Safety Air Gun is available in the configurations shown below or many others.  If you have an application you would like to discuss or to see how the Heavy Duty  Safety Air Guns will improve your process, give us a call, we are happy to help.

Heavy Duty Safety Air Gun Configuration Chart
Heavy Duty Safety Air Gun Sample Configurations

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Improving Auger Cleaning Process Using 2″ Flat Super Air Nozzles And Swivels

I recently worked with a customer who was looking to improve the cleaning process on the  inside of one of their screw augers. They were currently using a couple of 1/4″ pipes as air wands to clean the left over powder on the auger blades and direct it toward a chute at the bottom which fed into another auger used for recovery. While the setup worked somewhat, they were concerned with the amount of air they were using as well as the OSHA safety concerns associated to using open ended pipes and excessive noise levels.

The customer was able to send a sketch of their current setup and after some further conversations, I recommended our Model # 1122 2″ Flat Super Air Nozzle and our Model # 9053 1/4″ NPT Swivel Fitting. The 2″ Flat Super Air Nozzle produces a 2″ wide, high velocity laminar airflow and uses only 21.8 SCFM (80 PSIG) while maintaining a low sound level of only 77 dBA. The Swivel Fitting allows for 50 degrees of movement, so they can achieve the best angle to direct the air to the critical areas.

2″ Flat Super Air Nozzle
Swivel Fittings available from M4 up to 1″ NPT

All of our Air Nozzles are engineered to meet or exceed OSHA Standard 1910.24(b) for 30 PSIG dead end pressure, they cannot be dead-ended, there is always a path for the air to safely exit so the outlet pressure will never reach 30 PSIG. In addition, our products are going to meet the OSHA Standard CFR 29 – 1910.95(a) for allowable noise exposure levels as well.

If you are looking to reduce air consumption and noise while improving operator safety, give us a call at 800-903-9247 for assistance.

Justin Nicholl
Application Engineer