Ultrasonic Leak Detector: Because Leaks Won’t Find (Or Fix) Themselves

I once worked in an equipment repair shop with a small and simple compressed air system…just a 5HP single acting piston compressor that sat atop a 50 gallon tank, in the corner by “The Big Truck”. The majority of our work was field service, and management was big on maintaining our service trucks, so we checked tire pressures every Monday morning as we rolled out, and kept a tire chuck handy to ensure proper inflation. It was also used to supply a couple of air guns that were used at our drill press and soldering/assembly station. One morning, I noticed the air compressor was running when I arrived…I thought it was odd, because I knew for a fact it hadn’t been used in at least 16 hours, but that compressed air went someplace, right? We had a leak. Well, at least one.

This was mid-December, and the week between Christmas and New Year’s Day was characteristically slow, and typically devoted to a thorough shop cleaning. We also took the opportunity to get some bottles of soapy water and check for leaks at the handful of pipe fittings that comprised the system…for the uninitiated, if you have a leaky fitting, the escaping air blows bubbles in the soapy water (a cheap, messy way in other words). We found some bubbling, undid those fittings, cleaned them, and applied fresh pipe thread sealant (I don’t want to start any arguments, but I was taught that tape is more of a thread protectant than an effective sealing agent) and, in addition to replacing a couple of well-worn hoses, we were up and running.  And we never heard the compressor running first thing in the morning again.

Not all compressed air systems are as simple as that, though.  Many go from a room with several large & sophisticated air compressors, to corners of every building on the grounds.  Through valves & manifolds, to cylinders, machinery and blow offs, with more connections than you could soap-and-water check in a month.

In those cases, the EXAIR Model 9061 Ultrasonic Leak Detector makes short(er) work of finding the leaks.  With both visual (LED’s on the face) and audible (headphones) indications, even very small leaks are easy to detect with the parabola installed.  The precise location can then be found with the tubular extension.

EXAIR Ultrasonic Leak Detector “hones in” on the exact location of a leak in a compressed air line.

You’ll still have to fix the leaks yourself, but finding them is oftentimes more than half the battle.  And, once fixed, it can be worth a million (cubic feet of compressed air, that is.)

EXAIR’s Ultrasonic Leak Detectors are not only useful for finding compressed air leaks; they’re popular in a variety of other areas:

Additionally, they can be used to identify faulty bearings, brake systems, tire & tube leaks, engine seals, radiators, electrical relay arcing…anything that generates an ultrasonic sound wave.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Where Can’t I Use An EXAIR Super Air Knife?

Considering the material options available, there are very few places you CAN’T use a Super Air Knife. Most often, we find those to be due to extreme elevated temperature, like this one:

A caller from a glass manufacturing company wanted to replace a drilled pipe in a cooling application. Thing is, glass makers deal with their product in molten form, which is HOT…the ambient temperature that this drilled pipe is exposed to reaches 800°C, or 1,472°F.  Because of the temperature, and corrosive atmospheric elements (SO2 is also present, as if the heat wasn’t bad enough,) they have to replace the drilled pipe every so often, and wanted to explore other solutions.

Now, this was a rare case where a Super Air Knife would not have necessarily offered an improvement over a drilled pipe:

  • The air flow from the drilled pipe is primarily straight from their compressed air system.  Since the Super Air Knife entrains air from the surrounding environment at a rate of 40:1, the resultant flow would be very close to the 800°C ambient temperature…and not as effective at cooling as the much cooler compressed air supply temperature.  It wouldn’t have helped to reduce consumption if it simply didn’t work.
The Super Air Knife takes a supply of compressed air (1), discharges it through a gap that runs the length of the Air Knife (2,) and entrains an enormous amount of “free” air from the surrounding environment (3.)
  • Another great thing about the Super Air Knife is that it’s dramatically quieter than any other method of compressed air blowing.  Of course, if you find yourself in a 800°C sulfur dioxide environment, hearing protection is the least of your concerns.

    When supplied at 80psig, the EXAIR Super Air Knife produces a hard hitting, powerful curtain of air, with a sound level of only 69dBA.
  • EXAIR Super Air Knives (and all of our Intelligent Compressed Air Products) are compliant with OSHA Standard 1910.242(b) which limits the outlet pressure of a compressed air blowing device used for cleaning to 30psi…this protects personnel from high velocity debris and air embolisms.  Again, not a concern in an unoccupied (and uninhabitable) space.

Again, that’s a rare case…a very specific exception to a broadly inclusive rule, in light of the options EXAIR offers.  Consider:

  • Aluminum Super Air Knives are durable, lightweight, and suitable for most any installation in a typical industrial/commercial environment.  They’re good to 180°F (82°C) and are fitted with stainless steel fasteners to eliminate corrosion in damp environments.  The polyester shim can be replaced with a custom stainless steel shim, increasing the temperature rating to 400°F (204°C) if needed.
  • Type 303 Stainless Steel Super Air Knives offer higher tensile strength, and are good to 800°F (427°C.)  They are popular in applications with factors like high heat, corrosive environments, frequent spray down cleaning, outdoor installations, etc.
  • Type 316 Stainless Steel Super Air Knives are often specified in food and pharmaceutical applications, due to their even higher resistance to chemical attack and pitting.  They’re also rated to 800°F (427°C) and have the same high tensile strength as the Type 303 Stainless Steel models.
  • Some situations call for better corrosion resistance than these high grades of austenitic stainless steels – and that’s where EXAIR’s PVDF Super Air Knife comes in.  Fitted with PTFE shims and Hastelloy© C-276 hardware, they are especially well suited for processes involving the harshest of corrosive agents, such as electroplating, solar cell manufacturing, and lithium ion battery production, just to mention a few.  They would, in fact, be ideal for the SOenvironment at the glass factory, if it weren’t for the temperature…they’re rated to 275°F (135°C.)

Performance is identical, regardless of construction materials, and all EXAIR Super Air Knives come in lengths from 3″ to 108″ (except PVDF…those go up to 54″ lengths) and ship quickly from our well maintained inventory.  Aluminum and Stainless Steel models can be coupled together for even longer flow lengths.  Plumbing Kits and Universal Air Knife Mounting Systems make for easy and quick installation, and all Super Air Knife Kits come with an Automatic Drain Filter Separator, a Pressure Regulator, and a Shim Set for reliability, clean air flow, and total performance control.

If you need a reliable, cost effective, safe, quiet, and efficient curtain of air, EXAIR’s Super Air Knives are what you’re looking for.  If you’d like to discuss a particular application and/or product selection, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

What’s In My Air, And Why Is It Important?

Everyone knows there’s oxygen in our air – if there wasn’t oxygen in the air you’re breathing right now, reading this blog would be the least of your concerns. Most people know that oxygen, in fact, makes up about 20% of the earth’s atmosphere at sea level, and that almost all the rest is nitrogen. There’s an impressive list of other gases in the air we breathe, but what’s more impressive (to me, anyway) is the technology behind the instrumentation needed to measure some of these values:

Reference: CRC Handbook of Chemistry and Physics, edited by David R. Lide, 1997.

We can consider, for practical purposes, that air is made up of five gases: nitrogen, oxygen, argon, carbon dioxide, and water vapor (more on that in a minute.)  The other gases are so low in concentration that there is over 10 times as much carbon dioxide as all the others below it, combined.

About the water vapor: because it’s a variable, this table omits it, water vapor generally makes up 1-3% of atmospheric air, by volume, and can be as high as 5%.  Which means that, even on a ‘dry’ day, it pushes argon out of the #3 slot.

There are numerous reasons why the volumetric concentrations of these gases are important.  If oxygen level drops in the air we’re breathing, human activity is impaired.  Exhaustion without physical exertion will occur at 12-15%.  Your lips turn blue at 10%.  Exposure to oxygen levels of 8% or below are fatal within minutes.

Likewise, too much of other gases can be bad.  Carbon monoxide, for example, is a lethal poison.  It’ll kill you at concentrations as low as 0.04%…about the normal amount of carbon dioxide in the atmosphere.

For the purposes of this blog, and how the makeup of our air is important to the function of EXAIR Intelligent Compressed Air Products, we’re going to stick with the top three: nitrogen, oxygen, and water vapor.

Any of our products are capable of discharging a fluid, but they’re specifically designed for use with compressed air – in basic grade school science terms, they convert the potential energy of air under compression into kinetic energy in such a way as to entrain a large amount of air from the surrounding environment.  This is important to consider for a couple of reasons:

  • Anything that’s in your compressed air supply is going to get on the part you’re blowing off with that Super Air Nozzle, the material you’re conveying with that Line Vac, or the electronics you’re cooling with that Cabinet Cooler System.  That includes water…which can condense from the water vapor at several points along the way from your compressor’s intake, through its filtration and drying systems, to the discharge from the product itself.
  • Sometimes, a user is interested in blowing a purge gas (commonly nitrogen or argon) –  but unless it’s in a isolated environment (like a closed chamber) purged with the same gas, most of the developed flow will simply be room air.

Another consideration of air make up involves EXAIR Gen4 Static Eliminators.  They work on the Corona discharge principle: a high voltage is applied to a sharp point, and any gas in the vicinity of that point is subject to ionization – loss or gain of electrons in their molecules’ outer valences, resulting in a charged particle.  The charge is positive if they lose an electron, and negative if they gain one.  Of the two gases that make up almost all of our air, oxygen has the lowest ionization energy in its outer valence, making it the easier of the two to ionize.  You can certainly supply a Gen4 Static Eliminator with pure nitrogen if you wish, but the static dissipation rate may be hampered to a finite (although probably very small) degree.

At EXAIR Corporation, we want to be the ones you think of when you think of compressed air.  If you’ve got questions about it, give us a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

Air photo courtesy of Bruno Creative Commons License

Great Stuff About Jets

There are a number of fascinating facts about jets…both the aircraft engines and the EXAIR Intelligent Compressed Air Products:

  • Because they don’t require dense air to engage spinning blades (like their propeller driven counterparts,) they can operate at much higher altitudes. (Jet aircraft engines only)
  • They provide a high thrust, directed airstream, which makes them great for part ejection, chip removal, and part drying. (EXAIR Air Jets only)
  • With few or no moving parts, they are extremely reliable, durable, and safe. (Both jet aircraft engines and EXAIR Air Jets)
  • They use the Coanda effect (a principle of fluidics whereby a fluid flow tends to attach itself to a nearby surface, and follow that surface regardless of the flow’s initial direction) to do what they do.
    • EXAIR Air Jets use this principle to generate a vacuum in their throat, pulling in a large amount of “free” air from the surround environment, making their use of compressed air very, very efficient.
    • Jet (and propeller driven) aircraft wings employ the Coanda effect to create aerodynamic lift, enabling the plane to fly.

Now, since I’m not a pilot, nor do I particularly like to fly, but I AM a fluid dynamics nerd, the rest of this blog will be about the Air Jets that EXAIR makes.

All of our Air Jet products operate on the same principle…using the Coanda effect (as described above) to generate a high volume air flow while minimizing compressed air consumption:

(1) Compressed air enters and is distributed through an annular ring, and directed towards the discharge via the Coanda effect.
(2) This causes entrainment of surrounding air, both through the throat, and at the discharge.
(3) The total developed flow has tremendous force and velocity, for a minimal consumption of valuable compressed air.(1) Compressed air enters and is distributed through an annular ring, and directed towards the discharge via the Coanda effect.
(2) This causes entrainment of surrounding air, both through the throat, and at the discharge.
(3) The total developed flow has tremendous force and velocity, for a minimal consumption of valuable compressed air.

There are four distinct models of the EXAIR Air Jet:

  • Model 6013 High Velocity Air Jet is made of brass for economy and durability.  The annular ring gap (see 1, above) is fixed by a 0.015″ thick shim.  Performance can be modified by changing to a 0.006″ or 0.009″ thick shim, which come in the Model 6313 Shim Set.
  • Model 6013SS is a Type 303 Stainless Steel version, for higher temperatures – good to 400°F (204°C) – and superior corrosion resistance.
  • Model 6019 Adjustable Air Jet is brass construction, and dimensionally identical to the Model 6103.  Instead of a shim that sets the annular ring gap, though, it has a threaded plug, with a micrometer-style indicator, to “fine tune” the gap.
  • Model 6019SS is the Type 303 Stainless Steel version…fine tuning adjustability, good for high heat and/or corrosive elements.
Four distinct models to meet the needs of your air blowing application.

If you’d like to find out more about EXAIR’s quiet, efficient, and safe Air Jets, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

The Case for the Cold Gun

Heat is an unavoidable by-product of any cutting or machining operation. Think about it: you’re creating friction on a piece of material with a fast-moving piece of harder material in order to forcibly separate pieces of the original material from its existing shape & size. No matter what, something’s going to get hot: the work piece, the tooling, or (almost always) both. If you don’t do something about it, your parts can become damaged, your tooling can become dull and brittle, and productivity will suffer.

There are ways to alleviate the problem…you can slow the speed of your tooling, but that’s hardly practical, and only marginally effective.  You can use liquid cooling…in fact, you may have to if the particulars of the operation require the lubrication you can only get from a cutting oil or liquid coolant.  But those can be messy, expensive, and the time you spend maintaining the coolant could certainly be spent better elsewhere…like, on machining your products!

The EXAIR Cold Gun Aircoolant System is a novel solution to these problems…heat related and otherwise:

  • The Cold Gun uses compressed air to produce a stream of clean, cold air at 50°F (28°C) below supply air temperature.
  • They use Vortex Tube technology…no moving parts to wear out.
Instant cold air flow with no moving parts!
  • Cold flow and temperature are preset to optimize cooling capability, and are non-adjustable to prevent freeze-up during use.
  • Eliminates the expense of both the purchase & disposal of cutting fluids.
  • Removes the potential for health problems associated with breathing mist & vapors, and the safety issue of slipping on a wet floor.

Cold Gun Aircoolant System selection is easy & straightforward…we offer a standard, and a High Power version to meet your specific needs.

Four systems to choose from, to meet most any need.

We also offer Single & Dual Point Hose Kits, to further meet the needs of your application.  Right now, you don’t have to decide up front…order a Cold Gun Aircoolant System with a Single Point Hose Kit before December 31, 2018, and we’ll throw in the Dual Point Hose Kit for free.

If you’d like to find out more about how Cold Gun Aircoolant Systems can improve your machining or cutting operations, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Super Air Knives Provide Dry Surface for Printing

I’ve always liked Halloween.  My friends and I got to go trick-or-treating together around the neighborhood, under the supervision of a parent or two, until one year when we were deemed old enough to go around the immediate neighborhood (gasp) by OURSELVES!!!

You need to know that, for any of our Moms, that was a HUGE investment in trust they were putting in us. One that, I’m afraid was undeserved. See, we’d all heard rumors of “tricks” from some cool older kids, and were eager to try our hands at it. Now, we were a relatively mild mannered bunch. We certainly weren’t going to break anything or hurt anyone. But the tales of soaping windows had an irresistible appeal…so, after we donned our costumes that evening, we all sneaked a bar of hand soap out of the house, and set about on our great adventure. Which was not so great, for a couple of reasons:

First, Halloween that year fell on a particularly drizzly night.  We weren’t in danger of a rain-out, but there was a layer of “wet” on everything…especially the windows on which we planned to display our art. That didn’t stop us from trying, though…it just wasn’t near as effective, or fun, as we’d hoped.  Basically, we got some weak smudges here and there.

Second, our parents & neighbors were a lot more savvy than we’d expected. I’m not even sure what happened first…the discovery of the missing bars of soap, or the neighbors calling our parents to tell them what we were up to. We were all punished according to our respective families’ customs, and the next year, we were the oldest trick-or-treaters out there under adult supervision.

I think about that night whenever I see one of those “World’s Dumbest Criminals” shows, but it popped into my head recently while discussing a Super Air Knife application with a customer.  The caller worked in facility that produced pizza dough, and had recently implemented a quality tracking system that applied a temporary code to the rims of the plastic trays that carried the loaves of dough along a conveyor.   Thing is, the trays could still be wet from the wash/rinse cycle, and the ink (which is water soluble and is supposed to be removed by the washer anyway) really, really needs a pretty dry surface, or it’s just going to be a weak, smudgy mess, much like the great Window Soap Fail of 1970-something.

They purchased two Model 110003SS 3″ Stainless Steel Super Air Knives and installed one on each side of the conveyor, just after the rinse tunnel.  The Super Air Knives blow off the rims of the trays, leaving a clean, dry surface for the printer.

EXAIR Super Air Knives come in a wide variety of lengths to suit a wide range of applications.

EXAIR Super Air Knives come in a variety of materials, lengths from 3 inches to 9 feet, and are the quietest & most efficient compressed air operated blow off products on the market today.  If you’d like to find out more about they can help you, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Intelligent Compressed Air: Single Acting Reciprocating Air Compressors

Of all the types of air compressors on the market, you can’t beat the single acting reciprocating air compressor for simplicity:

Piston goes down: air is pulled in. Piston goes up: air is pushed out.

This simplicity is key to a couple of major advantages:

  • Price: they can cost 20-40% less than a similar rated (but more efficient) rotary screw model, up to about 5HP sizes.  This makes them great choices for home hobbyists and small industrial or commercial settings.
  • High pressure: It’s common to see reciprocating compressors that are capable of generating up to 3,000 psig.  Because the power is transmitted in the same direction as the fluid flow, they can handle the mechanical stresses necessary for this much better than other types of air compressors, which may need special modifications for that kind of performance.
  • Durability: out of necessity, their construction is very robust and rugged.  A good regimen of preventive maintenance will keep them running for a good, long time.  Speaking of which…
  • Maintenance (preventive): if you change your car’s oil and brake pads yourself, you have most of the know-how – and tools – to perform regular upkeep on a reciprocating air compressor.  There’s really not that much to them:

    The internals of a single acting reciprocating compressor.

Those advantages are buffered, though, by certain drawbacks:

  • Efficiency, part 1: The real work (compressing the air) only happens on the upstroke.  They’re less efficient than their dual acting counterparts, which compress on the downstroke too.
  • Efficiency, part 2: As size increases, efficiency decreases.  As stated above, smaller sizes usually cost appreciably less than more efficient (rotary screw, vane, centrifugal, etc.) types, but as you approach 25HP or higher, the cost difference just isn’t there, and the benefits of those other types start to weigh heavier in the decision.
  •  Maintenance (corrective):  Whereas they’re easy to maintain, if/when something does break, the parts (robust and rugged as they are) can get pretty pricey.
  • Noise: No way around it; these things are LOUD.  Most of the time, you’ll find them in a remote area of the facility, and/or in their own (usually sound-insulated) room.
  • High temperature:  When air is compressed, the temperature rises due to all the friction of those molecules getting shoved together…that’s going to happen with any air compressor.  All the metal moving parts in constant contact with each other, in a reciprocating model, add even more heat.
  • Oil in the air: If you’re moving a piston back & forth in a cylinder, you have to keep it lubed properly, which means you have oil adjacent to the air chamber.  Which means, no matter how well it’s built, you’re likely going to have oil IN the air chamber.

All that said, the benefits certainly do sell a good number of these compressors, quite often into situations where it just wouldn’t make sense to use any other type.  If you’re in the market for an air compressor,  you’ll want to find a local reputable air compressor dealer, and discuss your needs with them.  If those needs entail the use of engineered compressed air products, though, please feel free to give me a call to discuss.  We can make sure you’re going to ask your compressor folks the right questions.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook