Why doesn’t my “XYZ” work?

Pic by PoseMuse licensed by Pixabay

You’ve probably been there. You install a new Super Air Knife, or an EasySwitch Wet-Dry Vac (or any other product), and it doesn’t work as we promised. Or it works great for 2-3 years, and now it’s faltering. You have trouble shot everything you know to do. You’ve changed the filters, checked for leaks on the product, checked the connections, but still it is not performing as it was, or how it is supposed to. This is usually when I get the call, and more times than not, the issue is related to the air supply.

Whether this new item isn’t performing, or an older product has been working for 2 weeks, months, or years and stops, we first need to confirm the pressure. First, we need to make sure there is a T and pressure gauge at the point of use. Although psig is only one factor of the air flow, if it is too low (or too high in some cases) that is a definite problem. Without the proper psig, our tools will not function properly. If the psig is sufficient, and our product is not operating as claimed, the next thing we check is the SCFM.

There are a few ways of finding the SCFM…one is very easy and reliable, and the other can get you close enough to realize if there is a problem or not. The easy way is by installing a Digital Flow Meter near the point of use. Although the most reliable, it is not always feasible or cost-effective to have these near every air application in your system.

Without the Flow Meter, we need to start looking for reasons why the SCFM is not there. Whether a new install or an existing one, we need to evaluate the air flow by starting with the basics. Let’s start by identifying how much air your application requires. For instance, a Super Air Knife consumes 2.9 SCFM per inch, so a 48″ Super Air Knife will use 139.2 SCFM (at standard operation), that is equivalent to a 35 HP compressor dedicated solely to this 1 product. Assuming your compressor is large enough to flow this amount of air, we need to see what other products are being utilized in the system as well. Does your overall system have enough air to run each product?

So your compressor is large enough, the next step is to look at your line size. To run 139.2 SCFM, you will need a 3/4″ line and that is if you are within 20 ft of the source (compressor). If you are 150 feet away, you will need 1 1/4″ lines, and so on. This is an issue that pops up often.

The next thing we look for is any type of restrictions on the line. Are your filter and oil separators sized properly? Were there new products / stations added to the line. Is the product itself being maintained properly? Is your Air clean and dry? Are there any other line restrictions that could be interfering with the flow?

If all of these things check out, our last course of action is to get the product back for evaluation. We will tear it apart, many times needing to destroy it to find the cause. But proudly, I must say that we rarely find a manufacturing defect, but we look hard just in case, because we want to know as well. We can usually show you the issue, and find the root cause. Our reputation and quality is the highest in the industry, and it is not something we take lightly. We want to find a defect if it exists, so that we can immediately address them, and head off any future issues.

If you have one of our products that isn’t functioning as you hoped, or just purchased one that isn’t up to par, please look at some of the items mentioned above. And as always, reach out to us and let us help f we can.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Cover photo by gerralt / 25503 and licensed by Pixabay

Porous and Non-Porous E-vac Generators

Having an injection molding background I saw many uses for parts pickers using many different sizes from 90 – to 3000 ton injection molding machines and a vast amount of part sizes and shapes that varied from items as small as dinner plates to as big as municipal refuse containers. I dealt mainly with non-porous applications but EXAIR offers both porous and non-porous E-vacs to accommodate wide range of part sizes and weights.

EXAIR has High Vacuum Generators for Non-Porous Applications with high vacuum units up to 27″ Hg (91 kPa) with vacuum flows up to 15.8 SCFM (447 SLPM). The plastic products I was moving were all non-porous, meaning air or liquids would not permeate into the surface of my product. Other examples of non-porous material including plastic sub-straights include glass, steel sheet, ceramics, vinyl, sealed tiles and varnished wood.

Porous applications use a low vacuum generator. Low vacuum units up to 21″Hg (71kPa) with flows up to 18.5 SCFM (524 SLPM) are typically used for porous materials such as corrugate, wood, fabrics, cinder block, etc… The relatively lower level vacuum for porous materials prevents warping, marring, dimpling or disfiguring of the surface due to excessive vacuum. This style generates more vacuum flow to overcome porosity and leakage while maintaining control over the object being handled.

Referencing the previously mentioned refuse container application, I performed the weight and movement analysis and determined that four of our model 900754 vacuum cups and two of our model 810006M Non-porous E-vacs would have been more than adequate to unload and lift my 95 gallon refuse container lids from the injection molding machine and move them to the hot stamp center. I recall the vacuum cup system we had in place back then, would frequently drop out and lose control over the product. This was not only a real process headache, but also made for a legitimate safety issue as well.

EXAIR E-vacs actually have other interesting uses. They have been used in applications for bag and package opening, label placement, vacuum forming, leak testing and many other applications.

EXAIR also has accessories to round out vacuum cup systems including vacuum cups themselves, mufflers, check valves, vacuum tubing and fittings. We would have interest to discuss your application. If you have questions regarding which E-vac style and size is proper for your project please contact any of our Application Engineers to help you with selection and design of your system.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

The Blog of all Blogs: A Quick Resource of Blogs that we Blogged

EXAIR started writing Blogs in 2008. Since then, we have written well over 2000 Blogs. There is a ton of information in our Blog section on the website. There is most likely a Blog or 10 written about nearly each one of our products. These are primarily written by application engineers that know a thing or two about our products. There are also many application Blogs, that may be very relatable to what you are doing. When you journey to our Blog page (or simply click Blog form EXAIR.com), simply type in a key word or two in our search bar. This search bar is located just below the first row of published Blogs on the right hand of the screen, here is a screenshot of that section (right). You can also choose to follow our blog here as well.

As application engineers, we get asked questions every day. Many of these questions are best answered in one (or more) of these 2000+ Blogs. Many times a picture or video can answer your questions much more precisely than a quick conversation or an email. Many times we will send you a blog link to help. Drawing from my own experience, and asking the other Application Engineers for their lists, I wanted to put our most referenced blogs in one helpful location. I’ve categorized these the best that I can, and hopefully this will be a useful resource for you today, and in the future.

OPTIMIZING YOUR COMPRESSED AIR SYSTEM

Six Steps to Optimizing Your Compressed Air System

This is one of the key sections to our blogs. One of our main goals is to help you optimize your system. Here are 6 blogs that go into detail on each of these key points:

  1. Six Steps to Optimization: Step 1 – Measure the Air Consumption
  2. Six Steps to Compressed Air Optimization: Step 2 – Find and Fix Leaks.
  3. Six Steps to Compressed Air Optimization: Step 3 – Use Efficient and Quiet Engineered Products
  4. Six Steps to Optimizing Compressed Air: Step 4, Turn it Off When Not in Use
  5. Installing Secondary Receiver Tanks: Step 5 in Optimizing Your Compressed Air System
  6. Six Steps to Optimization: Step 6 – Control the Air Pressure at the Point of Use to Minimize Air Consumption

INDUSTRIAL HOUSEKEEPING

This is a product line that has a lot of maintenance questions, probably because these products are used to clean up dirt, and where there is dirt, there can be problems, clogs and leaks:

One of the most common questions we have concerns the Reversible Drum Vacuum (RDV) refurbishment Blog. The RDV is used on the Reversible Drum Vac, and the Chip Trapper products. We offer a refurb service for a fee, but most of the time you can do this on your own by watching and following this blog: Cleaning the Reversible Drum Vac

The Chip Trapper has two very popular blogs as well: Finding and Fixing Chip Trapper Vacuum Leaks as well as Cleaning the Chip Trapper’s Directional Valve

CABINET COOLERS

  1. Calculating Heat loads for Cabinet Coolers
  2. Finding the correct internal temperature of your Electrical Cabinet – don’t use a temp gun
  3. Thermostat & Solenoid Valve
  4. How To Install An EXAIR NEMA 4 or 4X Cabinet Cooler® System
  5. EXAIR Side Mount Kits for NEMA Type 4-4X Cabinet Cooler® Systems
  6. Cold Air Distribution Kit Installation
  7. Installing A Dual Cabinet Cooler Hardware Kit
  8. How to identify your Cabinet Cooler

VORTEX TUBES

  1. Vortex Tubes for Dummies
  2. Adjusting the Vortex Tube
  3. Vortex Tube Cold Fraction – effects on flow and temperature
  4. Application: Creating Freeze Seals for water lines

SUPER AIR KNIVES

  1. Application: Bottle Drying with Super Air Knife (instead of blower)
  2. Application: Super Air Knives drying automotive parts
  3. How to position and mount your Air Knife
  4. Which Air Knife should you choose?
  5. Super Air Knife Plumbing Kits
  6. Maximizing Super Air Knives with Shims

LINE VACS / CONVEYOR SYSTEMS

  1. Why Line Vacs need ambient air
  2. How to drill out Line Vac Generator Holes for increased performance
  3. Application: Conveying Coffee Beans

AIR AMPLIFIERS

  1. Super Air Amplifier Ratios explained
  2. Air Amplifier vs Fan – for cooling
  3. Application: Super Air Amplifier evacuating smoke or fumes

AIR ATOMIZING SPRAY NOZZLES

  1. Choosing the right Atomizing nozzle
  2. No-Drip Nozzle repair video
  3. Atomizing Nozzle identification
  4. Application: Atomizing Spray nozzles and Gummy Bears

SAFETY AIR GUNS

  1. Putting the Safe in Safety Air Guns
  2. Safety Air Gun Accessories, Extensions, Chip Shields and more
  3. Chip Shield sizes and selections

GEN 4 STATIC ELIMINATORS

  1. Changing the Gen 4 Power Supply Fuse
  2. Replacing the rocker switch on a Gen 4 Power Supply
  3. Changing the high power cord on the Gen 4 Ion Air Cannon
  4. Application: Solving Static and Print quality in food packaging

E-VAC VACUUM GENERATORS

  1. How to build a custom E-Vac System
  2. Choosing the right size Vacuum Cups

ACCESSORIES – FILTERS AND REGULATORS

  1. Filter Separator and Pressure Regulator with coupling kit installation 
  2. Rebuilding an Automatic Drain Filter Separator 
  3. Overview of EXAIR accessories

CALCULATIONS AND MORE

  1. Calculating SCFM at any pressure
  2. ROI Calculations with EXAIR products
  3. Do you need a receiver tank?
  4. EXAIR’s Calculator Library
  5. EXAIR’s OSHA compliance

OPTIMZATION – EFC, FLOWMETERS, AND ULTRASONIK LEAK DETECTORS

  1. EFC – Application: Candy Company saves big money with EFC
  2. Flowmeter – How to install a Hot Tap Flowmeter
  3. Flowmeter – Moving and or using Block-Off rings

There are many more blogs and videos at your disposal. This is just a recap of many of our most used, most viewed and most helpful for the day-to-day conversations that happen here at EXAIR. If you have ideas for new blogs – we would love to hear that as well. Please feel free to reach out at any time for more information on any of our intelligent compressed air products.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Cover photo by clker-free-vector-image licensed by Pixabay

Bed Coffee and the Coanda Profile

Photo by Stocksnap and licensed by Pixabay

Every weekend my wife craves her “bed coffee”. I do my best to bring her some coffee in bed at least one, if not both weekend days. It makes her happy, and when she’s happy… The only thing I truly despise about this act of kindness is the actual pouring of the coffee. Now, I’m a decently smart guy but pouring this weekend coffee is a mess. Every time I end up with coffee on the counter, and many times on the mug. And when it gets on the mug it’s over, because it goes to the bottom of the mug and if I forget to wipe that off? Well, it gets on the sheets, because she inevitably rests her coffee on the sheets, and somehow this is my fault, and now she’s not happy anymore… (in fairness, she is still happy and just busts my chops about this part). But why does this happen to me?

It is a little refreshing to realize that I am just a victim of this scientific phenomenon called the Coanda profile. When I start to pour the coffee, the stream adheres to the outer wall of the coffee pot. This causes the coffee to run down the pot and onto the counter, where the cups are sitting (getting that mug bottom soaked in coffee). This is partially caused by the Coanda effect, and partially caused by me not being awake enough to outsmart a coffee pot. The simple solution is to simply increase the flow rate, right? This is correct however, this does not eliminate the Coanda Effect. In fact, even if you are smarter than me you will notice, after you pour the coffee, there is liquid on the side of the pot. That liquid may only be in the form of steam but it’s there, just to a lesser degree. The solution to avoid the mess, is to adjust the pot so that the pour angle is such that gravity overpowers the majority of the Coanda effect. Many times, in my case, this adjustment is too late…

The Coanda phenomena closely depends on several factors, the speed of the jet flow (pouring at a steeper angel), the flow rate (pouring more or less volume over time), and the profile of the container. I believe that a mad scientist invented my particular coffee pot with full intention of messing up countertops all over the world. In fact, he may be a super villain.

At EXAIR, we utilize the Coanda Profile to our benefit on most products. Here are 2 products that are perfect examples of how we use the Coanda Profile to maximize the performance of our products.

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.
Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces optimize entrainment of air (4) from the surrounding environment.

As you can see above, using the Coanda Profile correctly, dramatically increases the efficiency and the entrainment of air in our products. Between the Coanda effect, and the air entrainment, some of our products like the Super Air Amplifiers can output up to 25 times the amount of air that they consume.

Please contact us at anytime to see how the intelligent compressed air products of EXAIR can assist you in your application. And, don’t forget about bed coffee, it’s a win win for you and your spouse…

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Cover Photo by monileoni and licensed by Pixabay

Villain image by chrismaguirang and licensed by Pixabay