Intelligent Compressed Air: Single Acting Reciprocating Air Compressors

Of all the types of air compressors on the market, you can’t beat the single acting reciprocating air compressor for simplicity:

Piston goes down: air is pulled in. Piston goes up: air is pushed out.

This simplicity is key to a couple of major advantages:

  • Price: they can cost 20-40% less than a similar rated (but more efficient) rotary screw model, up to about 5HP sizes.  This makes them great choices for home hobbyists and small industrial or commercial settings.
  • High pressure: It’s common to see reciprocating compressors that are capable of generating up to 3,000 psig.  Because the power is transmitted in the same direction as the fluid flow, they can handle the mechanical stresses necessary for this much better than other types of air compressors, which may need special modifications for that kind of performance.
  • Durability: out of necessity, their construction is very robust and rugged.  A good regimen of preventive maintenance will keep them running for a good, long time.  Speaking of which…
  • Maintenance (preventive): if you change your car’s oil and brake pads yourself, you have most of the know-how – and tools – to perform regular upkeep on a reciprocating air compressor.  There’s really not that much to them:

    The internals of a single acting reciprocating compressor.

Those advantages are buffered, though, by certain drawbacks:

  • Efficiency, part 1: The real work (compressing the air) only happens on the upstroke.  They’re less efficient than their dual acting counterparts, which compress on the downstroke too.
  • Efficiency, part 2: As size increases, efficiency decreases.  As stated above, smaller sizes usually cost appreciably less than more efficient (rotary screw, vane, centrifugal, etc.) types, but as you approach 25HP or higher, the cost difference just isn’t there, and the benefits of those other types start to weigh heavier in the decision.
  •  Maintenance (corrective):  Whereas they’re easy to maintain, if/when something does break, the parts (robust and rugged as they are) can get pretty pricey.
  • Noise: No way around it; these things are LOUD.  Most of the time, you’ll find them in a remote area of the facility, and/or in their own (usually sound-insulated) room.
  • High temperature:  When air is compressed, the temperature rises due to all the friction of those molecules getting shoved together…that’s going to happen with any air compressor.  All the metal moving parts in constant contact with each other, in a reciprocating model, add even more heat.
  • Oil in the air: If you’re moving a piston back & forth in a cylinder, you have to keep it lubed properly, which means you have oil adjacent to the air chamber.  Which means, no matter how well it’s built, you’re likely going to have oil IN the air chamber.

All that said, the benefits certainly do sell a good number of these compressors, quite often into situations where it just wouldn’t make sense to use any other type.  If you’re in the market for an air compressor,  you’ll want to find a local reputable air compressor dealer, and discuss your needs with them.  If those needs entail the use of engineered compressed air products, though, please feel free to give me a call to discuss.  We can make sure you’re going to ask your compressor folks the right questions.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

 

Intelligent Compressed Air: Sliding-Vane Compressors

If you’re an active reader of the EXAIR blog, you’ve seen several posts over the last year about the various different types of air compressors. From the positive-displacement style of compressors (Rotary Scroll, Rotary Screw, Single and Double Acting Reciprocating Compressors,) as well as a review of a dynamic style (Centrifugal Compressors). In this blog, I’ll be discussing another of the positive-displacement variety: The Sliding-Vane Compressor.

Sliding Vane2
Air enters from the right, and as the compression chamber volume reduces due to counterclockwise rotation, the pressure increases until the air discharges to the left

In positive-displacement type compressors, a given quantity of air or gas is trapped in a compression chamber. The volume of this air is then mechanically reduced, causing an increase in pressure. A sliding-vane compressor will consist of a circular stator that is housed in a cylindrical rotor. The rotor then has radially positioned slots where the vanes reside. While the rotor turns on its axis, the vanes will slide out and contact the bore of the stator wall. This creates compression in these “cells”. An inlet port is positioned to allow the air flow into each cell, allowing the cells to reach their maximum volume before reaching the discharge port. After passing by the inlet port, the size of the cell is reduced as rotation continues and each vane is then pushed back into its original slot in the rotor.  Compression will continue until the cell reaches the discharge port. The most common form of sliding-vane compressor is the lubricant injected variety. In these compressors, a lubricant is injected into the compression chamber to act as a lubricant between the vanes and the stator wall, remove the heat of compression, as well as to provide a seal. Lubricant injected sliding-vane compressors are generally sold in the range of 10-200 HP, with capacities ranging from 40-800 acfm.

Advantages of a lubricant injected sliding-vane compressor include:

  • Compact size
  • Relatively low purchase cost
  • Vibration-free operation does not require special foundations
  • Routine maintenance includes lubricant and filter changes

Some of the disadvantages that come with this type of compressor:

  • Less efficient than the rotary screw type
  • Lubricant carryover into the delivered air will require proper maintenance of an oil-removal filtration system
  • Will require periodic lubricant changes

With the host of different options in compressor types available on the market, EXAIR recommends talking to a reputable air compressor dealer in your area to help determine the most suitable setup based on your requirements. Once your system is up and running, be sure to contact an EXAIR Application Engineer to make sure you’re using that compressed air efficiently and intelligently!

Tyler Daniel

Application Engineer

E-mail: TylerDaniel@exair.com

Twitter: @EXAIR_TD

Diagram:  used from Compressed Air Challenge Handbook

Compressor Control – A Way to Match Supply to Demand

Rarely does the compressed air demand match the supply of the compressor system. To keep the generation costs down and the system efficiency as high as possible Compressor Controls are utilized to maximize the system performance, taking into account system dynamics and storage. I will touch on several methods briefly, and leave the reader to delve deeper into any type of interest.

air compressor

  • Start/Stop – Most basic control –  to turn the compressor motor on and off, in response to a pressure signal (for reciprocating and rotary type compressors)
  • Load/Unload – Keeps the motor turning continuously, but unloads the compressor when a pressure level is achieved.  When the pressure drops to a set level, the compressor reloads (for reciprocating, rotary screw, and centrifugal type)
  • Modulating – Restricts the air coming into the compressor, as a way to reduce the compressor output to a specified minimum, at which point the compressor is unloaded (for lubricant-injected rotary screw and centrifugal)
  • Dual/Auto Dual – Dual Control has the ability to select between Start/Stop and Load /Unload control modes.  Automatic Dual Control adds the feature of an over-run timer, so that the motor is stopped after a certain period of time without a demand.
  • Variable Displacement (Slide Valve, Spiral Valve or Turn Valve) – Allows for gradual reduction of the compressor displacement while keeping the inlet pressure constant (for rotary screw)
  • Variable Displacement (Step Control Valves or Poppet Valves) – Similar effect as above, but instead of a gradual reduction, the change is step like (for lubricant injected rotary types)
  • Variable Speed – Use of a variable frequency AC drive or by switched reluctance DC drive to vary the speed of the motor turning the compressor. The speed at which the motor turns effects the output of the system.

In summary – the primary functions of the Compressor Controls are to match supply to demand, save energy, and protect the compressor (from overheating, over-pressure situations, and excessive amperage draw.) Other functions include safety (protecting the plant and personnel), and provide diagnostic information, related to maintenance and operation warnings.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

A Brief History of the Air Compressor

Essentially compressed air technology was first used with the knowledge of how to start a fire.  Humans learned that to get the fire started, blowing helped the process, healthy human lungs can generate approximately .02 to .08 bar or .3 to 1.2 PSI.

At the beginning of the metallurgical age (approximately 3000 B.C.) a higher volume of air than what human lungs could produce was required to the reach the temperatures required to melt and form metals such as copper, tin, lead, etc.  This need lead to the hand-operated bellows, the first mechanical air compressor.  Approximately 1500 years later the more efficient foot powered bellows was developed.

33007143764_131090c6bb_o.jpg

The foot powered bellows was followed by water powered bellows and was the mainstay for more than 2000 years.  However as blast furnaces came into being the need for compressed air increased.  This lead John Smeaton in 1762 to design a water wheel that powered a blowing cylinder and this began to replace bellows.  In 1776 John Wilkinson developed an efficient blasting machine and this was the beginning for mechanically powered air compressors.

As time progressed the idea of transmitting energy via compressed air became acceptable.  This idea was demonstrated around 1800 when the newly invented pneumatic rock drill was used to tunnel 80 miles under Mt. Cenis to connect Italy & France by rail.  This was an extraordinary feat for the time and garnered global interest.  This event perpetuated great interest into pneumatic powered devices  and brought us the air powered motors, clocks and even beer dispensers!

While compressed air is capable of transmitting energy long distances and performing tremendous work it also referred to as the 4th utility in industrial plants due to its cost.  We at EXAIR have been promoting compressed air conservation and safety using highly engineered products for 35 years!  Our products wring the maximum of energy out of every SCFM fed to them by using air entrainment and the Coanda effect.  Not only are we conserving your compressed air we offer products that are quiet and can’t be dead ended which prevents air embolisms.

If you are interested in discussing conserving compressed air and/or compressed air safety, I would enjoy hearing from you.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

A Review of Centrifugal Air Compressors

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw, sliding vane and rotary-scroll air compressors. You can click on the links above to check those out. Today, we will examine centrifugal air compressors.

The types of compressors that we have looked at to date have been of the Positive Displacement type.  For this type, an amount of air is drawn in and trapped in the compression area, and the volume in which it is held is mechanically reduced, resulting is rise in pressure as it approaches the discharge point.

types of compressors

The centrifugal air compressors fall under the Dynamic type. A dynamic compressor operates through the principle that a continuous flow of air has its velocity raised in an impeller rotating at a relatively high speed (can exceed 50,000 rpm.) The air has an increase in its kinetic energy (due to the rise in velocity) and then the kinetic energy is transformed to pressure energy in a diffuser and/or a volute chamber. The volute is a curved funnel that increases in area as it approaches the discharge port. The volute converts the kinetic energy into pressure by reducing speed while increasing pressure. About one half of the energy is developed in the impeller and the other half in the diffuser and volute.

Centrifugal Compressor
Centrifugal Compressor Components

The most common centrifugal air compressor has two to four stages to generate pressures of 100 to 150 PSIG.  A water cooled inter-cooler and separator between each stage removes condensation and cools the air prior to entering the next stage.

Some advantages of the Centrifugal Air Compressor-

  • Comes completely packaged fort plant air up to 1500 hp
  • As size increases, relative initial costs decrease
  • Provides lubricant-free air
  • No special foundation required

A few disadvantages-

  • Higher initial investment costs
  • Has specialized maintenance requirements
  • Requires unloading for operation at reduced operational capacities

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about air compressors or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

 

Rotary Scroll-Type Compressor

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw and sliding vane air compressors. You can click on the links above to check those out. Today, I will review the basics of the rotary scroll-type compressor.

The rotary scroll type compressor falls under the positive displacement-type, the same as the other types previously discussed.  A positive displacement type operates under the premise that a given quantity of air is taken in, trapped in a compression chamber and the physical space of the chamber is mechanically reduced.  When a given amount of air occupies a smaller volume, the pressure of the air increases.

Each of the previous positive displacement type compressors use a different mechanism for the reduction in size of the compression chamber. The rotary scroll uses two inter-meshing scrolls, that are spiral in shape. One of the scrolls is fixed, and does not move (in red).  The other scroll (in black) has an “orbit” type of motion, relative to the fixed scroll. In the below simulation, air would be drawn in from the left, and as it flows clockwise through the scroll, the area is reduced until the air is discharged at a high pressure at the center.

Two_moving_spirals_scroll_pump
How it Works- A fixed scroll (red), and an ‘orbiting’ scroll (black) work to compress the air

It is of note that the flow from start to finish is continuous, providing air delivery that is steady in pressure and flow, with little or no pulsation.

There is no metal to metal sliding contact, so lubrication is not needed.  A drawback to an oil free operation is that oil lubrication tends to reduce the heat of compression and without it, the efficiency of scroll compressors is less than that of lubricated types.

The advantages of the rotary scroll type compressor include:

  • Comes as a complete package
  • Comparatively efficient operation
  • Can be lubricant-free
  • Quiet operation
  • Air cooled

The main disadvantage:

  • A limited range of capacities is available, with low output flows

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Rotary Scroll GIF:  used from of Public Domain

Adjustable Spot Cooler Provides Needed Cooling In Sunglass Lens Manufacturing

A little while back, I worked with a large eyeglass manufacturer on a sunglass lens cooling application. In their setup, they were dry cutting film-coated lenses with a router and after the lenses are cut, they are passed through several different rinse cycles and inspected for scratches or other damage. They were seeing a high number of reject parts and determined that the heat being generated by the tooling, was causing the irregularities. In an effort to alleviate the condition, they used a section of open flexible tubing to blow compressed air at the bit, which helped a little, but they were still concerned with the amount of scrap material.

I recommended they use our Model # 3825 Adjustable Spot Cooler System in the process. The Adjustable Spot Cooler incorporates a Vortex Tube to provide a temperature drop from the incoming supply air temperature. Using the temperature control valve, the exhausting air temperature and flow can be adjusted to fit the application. The system includes a flexible hose to focus the cold air to the desired area until re-positioned. The system also features a magnetic base that allows for easy mounting. By incorporating the filter separator included in the system, they can remove any moisture and/or contaminants in the air supply, relieving any concern with contamination or damage to the part.

Model 3825 Adjustable Spot Cooler System

If you have a cooling application you’d like to discuss or for help selecting the best product to fit your need,  give me a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

sunglasses image courtesy of passer-by via creative common license.