Compressed Air System Maintenance

When I was seventeen my grandfather took me to a used are dealership and helped me buy my first car. It wasn’t anything special, as it was a 1996  Chevrolet Lumina. It had its fair share of bumps and bruises, but the bones were solid. We took it home and he taught me how to do all the basics, we changed the oil, oil filter, air filter, brakes, pretty much every fluid we could, we changed.

2100756931_c7416f9bb9_z.jpg

You see my grandfather retired from Ford Motor Company after 50+ years of service. And he always said, “If you treat it right, it will treat you right.”; and I’ve lived by that ever since.

Just like a car, air compressors require regular maintenance to run at peak performance and minimize unscheduled downtime. Inadequate maintenance can have a significant impact on energy consumption via lower compression efficiency, air leakage, or pressure variability. It can also lead to high operating temperatures, poor moisture control, and excessive contamination.

Most problems are minor and can be corrected by simple adjustments, cleaning, part replacement, or the elimination of adverse conditions. This maintenance is very similar to the car maintenance mentioned above, replace filters, fluids, checking cooling systems, check belts and identify any leaks and address.

All equipment in the compressed air system should be maintained in accordance with the manufacturers specifications. Manufacturers provide inspection, maintenance, and service schedules that should be followed strictly. In many cases, it makes sense from efficiency and economic stand-points to maintain equipment more frequently than the intervals recommended by the manufactures, which are primarily designed to protect equipment.

One way to tell if your system is being maintained well and is operating properly is to periodically baseline the system by tracking power, pressure, flow (EXAIR Digital Flowmeter), and temperature. If power use at a given pressure and flow rate goes up, the systems efficiency is degrading.

23666469499_3ac0e159df_z.jpg
Air Compressor

Types Of Maintenance

Maintaining a compressed air system requires caring for the equipment, paying attention to changes and trends, and responding promptly to maintain operating reliability and efficiency. Types of maintenance include;

  1. Poor Maintenance – Sadly, some plants still operate on the philosophy, “If it isn’t broke, don’t fix it.” Due to the lack of routine preventative maintenance, this practice may result in complete replacement of an expensive air compressor as well as unscheduled and costly production interruptions.
  2. Preventive  Maintenance – This type of maintenance can be done by plant personnel or by an outside service provider. Usually, it includes regularly scheduled monitoring of operating conditions. Replacement of air and lubricant filters, lubricant sampling and replacement, minor repairs and adjustments, and an overview of compressor and accessory equipment operation.
  3. Predictive  Maintenance – Predictive maintenance involves monitoring compressor conditions and trends , including operating parameters such as power use, pressure drops, operating temperatures, and vibration levels. The Right combination of preventive and predictive maintenance generally will minimize repair and maintenance costs.
  4. Proactive Maintenance – If a defect is detected, proactive maintenance involves looking for the cause and determining how to prevent a recurrence.

Unfortunately, even the best maintenance procedures cannot eliminate the possibility of an unexpected breakdown. Provisions should be made for standby equipment to allow maintenance with out interrupting production.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Images Courtesy of Tampere Hacklab

6 Basic Steps for Good Air Compressor Maintenance (And When to Do Them)

A production equipment mechanic with the 76th Maintenance Group, takes meter readings of the oil pressure and temperature, cooling water temperature and the output temperature on one of two 1,750 horsepower compressors. (Air Force photo by Ron Mullan)

In one of my previous jobs, I was responsible for the operation of the facility.  One of my biggest responsibilities was the air compressor because it supplied pressurized air though out the facility to feed the pneumatic systems.  Like with many industries, the compressor system is the life blood of the company.  If the compressor fails, the whole facility will stop.  In this blog, I will share some preventative maintenance items and schedules for your air compressors.

Because the cost to make compressed air is so expensive, compressed air systems are considered to be a fourth utility.  And with any important investment, you would like to keep it operating as long and efficiently as possible.  To do this, it is recommended to get your air compressor a “checkup” every so often.  I will cover some important items to check as well as a recommended schedule for checking.  Depending on the size of your air compressors, some items may or may not apply.

1. Intake filter:  The intake filter is used to clean the air that is being drawn into the air compressor.  Particles can damage the air pump mechanisms, so it is important to have the proper filtration level.  But, as the intake filter builds up with debris, the pressure drop will increase.  If they are not properly monitored and cleaned, the air flow will be restricted.  This can cause the motors to operate harder and hotter as well as reduce the efficiency of the air compressor.

2. Compressor Oil:  This would be for flooded screws and reciprocating compressors that use oil to operate the air pump.  Most systems will have an oil sight gauge to verify proper levels.  In larger systems, the oil can be checked for acidity which will tell you the level at which the oil is breaking down.  The oil, like in your car, has to be changed after so many hours of operation.  This is critical to keep the air pump running smoothly without service interruptions.

3. Belts and Couplings:  These items transmit the power from the motor to the air pump.  Check their alignment, condition, and tension (belts only) as specified by the manufacturer.  You should have spares on hand in case of any failures.

4. Air/Oil Separators:  This filter removes as much oil from the compressed air before it travels downstream.  It returns the oil back to the sump of the air compressor.  If the Air/Oil Separator builds too much pressure drop or gets damaged, excess oil will travel downstream.  Not only will the air pump lose the required oil level, but it will also affect the performance of downstream parts like your air dryer and after cooler.

5. Internal filters:  Some air compressors will come with an attached refrigerated air dryer.   With these types of air compressors, they will place coalescing filters to remove any residual oil.  These filters should be checked for pressure drop.  If the pressure drop gets too high, then it will rob your compressed air system of air pressure.  Some filters come with a pressure drop indicator which can help you to determine the life of the internal filter element.

6. Unloader valve:  When an air compressor unloads, this valve will help to remove any compressed air that is trapped in the cavity of the air pump.  So, when the air compressor restarts, it does not have to “work” against this “trapped” air pressure.  If they do not fully unload, the air compressor will have to work much harder to restart, wasting energy.

Preventative maintenance is very important, and checks need to be performed periodically.  As for a schedule, I created a rough sequence to verify, change, or clean certain items that are important to your air compressor.  You can also check with your local compressor representative for a more detailed maintenance schedule.

Daily:

  • After stopping, remove any condensate from the receiver tank.
  • Check oil level.

Monthly:

  • Inspect cooling fins on air pump. Clean if necessary
  • Inspect oil cooler. Clean if necessary

Quarterly:

  • Inspect the inlet air filter. Clean or replace if necessary.
  • Check the belt for tension and cracks. Tighten or replace.
  • Check differential pressure indicators on outlet compressed air filters.

Yearly:

  • Replace Air Inlet Filter
  • Replace the air-oil separator
  • Test safety valves and unloader valve
  • Replace compressed air filters
  • Change oil
  • Grease bearings if required

Keeping your air compressor running optimally is very important for pneumatic operations and energy savings.  I shared some important information above to assist.  Another area to check would be your pneumatic system downstream of the air compressor.  EXAIR manufactures engineered products that can reduce air consumption rates.  You can contact an Application Engineer to discuss further on how we can save you energy, money, and your air compressor.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

About Air Compressors: Air Intake Best Practices

Take a second and think about where the air compressor is located within your facility.  It is more than likely not a major focal point displayed prominently in the floor layout. There is a better chance it is tucked away in a corner of the facility where operators seldom travel.  No matter the type of air compressor, it still has an intake where it pulls in the ambient air from around the compressor then sends it through some process and on the demand side of your compressed air system.  These intakes can easily be placed out of sight and out of mind especially in older facilities that were designed when compressors were loud and the piping layout kept them away from operators due to sound level restrictions.

Air Compressor
Antique Air Compressor (Not safe for use!)

That’s why your compressor manufacturer supplies a specific grade of air inlet/intake filter, and this is your first line of defense. If it’s dirty, your compressor is running harder, and costs you more to operate it.  If it’s damaged, you’re not only letting dirt into your system; you’re letting it foul & damage your compressor. It’s just like changing the air filter on your car, your car needs clean air to run correctly, so does your compressor and the entire demand side of your compressed air system.

According to the Compressed Air Challenge, as a compressor inlet filter becomes dirty, the pressure drop across the inlet increases, this is very similar to the point of use compressed air filters.  The inlet filter on the compressor is the only path the compressor has to pull in the air, when restricted the compressor can begin to starve for air very similar to if you only had a small straw to breath through and told to run a marathon.  A clogged inlet filter can give false symptoms to compressor technicians as well.

The effects can mimic inlet valve modulation which result in increased compression ratios. If we were to form an example based on a compressor with a positive displacement, if the filter pressure drop increases by 20″ H2O, a 5% reduction of the mass flow of air will be present without a reduction in the power being drawn by the compressor. This all leads to inefficiency which easily amounts to more than the cost to replace the depleted inlet air filter.

compressor
Compressed Air System

Where you place the filter is just as important as how often you replace it.  There are some tips to be used when mounting the inlet filter.

  1. The filter can be placed on the compressor, but the inlet pipe should be coming from an external area to the compressor room or even the building if possible. The inlet should be free from any contaminants as well.  Some examples that are easy to overlook are nearby condensate discharges, other system exhausts and precipitation.
  2. Depending on the type of compressor being used, a lower intake air temperature can increase the mass flow of air due to the air density.  A compressor that is lubricant injected is not susceptible to this due to the air mixing with the warmer lubricant before being compressed.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Images Courtesy of  the Compressed Air Challenge and thomasjackson1345 Creative Commons.

How a Centrifugal Compressor Works

Continuing our series on different types of air compressors, today’s blog will feature the centrifugal compressor.  The centrifugal compressor is classified as a dynamic compressor.  Dynamic compressors are designed to work with  a continuous flow of air that has its velocity increased by an impeller rotating at a very high speed.

The centrifugal compressor works by transforming the kinetic energy and velocity into pressure energy in the diffuser.  The air passes through the inlet guide vanes being drawn into the center of a rotating Impeller with radial blades and is then pushed outward from the center by centrifugal force. This radial movement of air results in a pressure rise and the generation of kinetic energy.  The kinetic energy is also converted into pressure by passing through the diffuser.

Centrifugal Pic 1
Sample Centrifugal Compressor

Multiple stages are required to raise the pressure to a sufficient level for typical industrial plant requirements.  Each stage takes up a part of the overall pressure rise of the compressor unit.  Depending on the pressure required for the application, a number of stages can be arranged in a series to achieve a higher pressure.

The most common centrifugal air compressor has two to four stages to generate pressures of 100 to 150 PSIG and incorporates a water cooled inter-cooler and separator between each stage to remove condensation and cool the air prior to entering the next stage.

Centrifugal compressors are the near middle of the road regarding efficiency, their typical operating cost is 16 to 20 kW/100 CFM.  The most efficient compressor type is the double-acting reciprocating and costs 15 to 16 kW/100 SCFM and the least is the Sliding Vane which costs 21 to 23 kW/100 SCFM.

Advantages of the centrifugal air compressor:

  • Up to 1500 HP systems are available
  • Price per HP drops as system size increases
  • Supplies lubricant-free air
  • Special installation pads are not required for installation

Disadvantages of the centrifugal air compressor

  • Costs more Initially
  • Requires specialized maintenance
  • Due to high rotational speeds (can exceed 50,000 RPM) precision high speed bearings and vibration monitoring are required

EXAIR recommends contacting a reputable air compressor dealer in your area to discuss your volume and pressure requirements to determine the best size & type air compressor for your needs.

Regardless of the type of air compressor you have, EXAIR’s Intelligent Compressed Air Products® can minimize your compressed air consumption, potentially reducing the size of compressor needed, reduce noise and still deliver powerful results!   If you would like to discuss highly efficient and quiet point of use compressed air products or any EXAIR product, we would enjoy hearing from you. 

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

Image Courtesy of  the Compressed Air Challenge

General Good Ideas For The Compressor Room

When considering your compressor room all too often the phrase applies “out of sight and out of mind”.  Of course, we all know that is not a good approach to the compressor room or really anything in life.  Unfortunately, many of us take for granted that very system that delivers the power to keep our machines, equipment and tools operating.

Air Compressor
Compressor Room Located Outdoors

So, what can we do keep the ‘lungs” of our plants performing reliably and efficiently?  Since this Blog is about “General Good Ideas For The Compressor Room”, I have some points below for your consideration.

  • Ideally the compressor room should be centrally located to minimize the length of the pipes and allows for easier noise control. With long piping runs leaks become more likely and frictional losses are increased.
  • The compressor room should be sized to allow for easy maintenance and future expansion.
  • For efficient operation air compressors need clean intake air. Intake air that is dusty, dirty or contains gaseous contamination will reduce the efficiency and possibly the longevity of your equipment.
  • The compressor room needs adequate ventilation since air compressors generate significant heat. If excessive heat is allowed to build up it reduces the efficiency of the air compressor raising utility costs, causes compressor lubricant to break down prematurely that could possibly result in increased maintenance and compressor failure.
  • What is the velocity of the air through the main headers? If the speed is above 1200 FPM many dryers have reduced efficiency and speeds greater than this can also carry moisture past the drainage drop legs.
  • Excess friction caused by too small of a diameter piping creates pressure loss, which reduces efficiency and if the compressor is ran above its pressure rating to overcome the frictional losses increases energy consumption, maintenance costs and down time.

Now that your compressor room is shipshape in Bristol fashion, you might think that all is well.  While that may be true, chances are there are other significant additional savings to be had.  EXAIR specializes in point of use compressed air products that are highly efficient and quiet!  If you have any blow-offs that are open tube or howl as loud as the ghost of Christmas yet to come, check out EXAIR’s Super Air Nozzles.  They are highly efficient and quiet, in fact they meet OSHA Standard 29 CFR – 1941.95 for maximum allowable noise and OSHA Standard 29 CFR 1910.242 (b) for higher than 30 PSIG blow-off pressure.  All of EXAIR’s compressed air products are engineered to minimize compressed air consumption and take advantage of the Coanda effect.  Simply stated EXAIR’s highly engineered, intelligent designs entrain (combine) ambient air with the compressed air supply which saves you money!

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

EXAIR also offers the Ultra Sonic Leak Detector.  Simply point the device at a suspected leak which are typically found at unions, pipes, valves and fittings from up to 20’ away.   Plants that are not maintaining their plumbing can waste up to 30% of their compressors output through undetected leaks.

ultrasonic_2
EXAIR Ultra Sonic Leak Detector

EXAIR has a complete optimization product line that the Ultra Sonic Leak Detector is in that includes the Electronic Flow Control, Digital Flowmeter’s and a Digital Sound Level Meter.  All designed to either increase the safety or efficiency of your compressed air usage.

EXAIR has 15 other product lines all designed to increase your process efficiency and save you money by using you compressed air supply efficiently.  Why not visit the EXAIR website or call and request a free catalog?

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.   We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitte
Like us on Facebook

 

Image taken from the Best Practices for Compressed Air Systems Handbook, 2nd Edition

Intelligent Compressed Air: Single Acting Reciprocating Air Compressors

Of all the types of air compressors on the market, you can’t beat the single acting reciprocating air compressor for simplicity:

Piston goes down: air is pulled in. Piston goes up: air is pushed out.

This simplicity is key to a couple of major advantages:

  • Price: they can cost 20-40% less than a similar rated (but more efficient) rotary screw model, up to about 5HP sizes.  This makes them great choices for home hobbyists and small industrial or commercial settings.
  • High pressure: It’s common to see reciprocating compressors that are capable of generating up to 3,000 psig.  Because the power is transmitted in the same direction as the fluid flow, they can handle the mechanical stresses necessary for this much better than other types of air compressors, which may need special modifications for that kind of performance.
  • Durability: out of necessity, their construction is very robust and rugged.  A good regimen of preventive maintenance will keep them running for a good, long time.  Speaking of which…
  • Maintenance (preventive): if you change your car’s oil and brake pads yourself, you have most of the know-how – and tools – to perform regular upkeep on a reciprocating air compressor.  There’s really not that much to them:

    The internals of a single acting reciprocating compressor.

Those advantages are buffered, though, by certain drawbacks:

  • Efficiency, part 1: The real work (compressing the air) only happens on the upstroke.  They’re less efficient than their dual acting counterparts, which compress on the downstroke too.
  • Efficiency, part 2: As size increases, efficiency decreases.  As stated above, smaller sizes usually cost appreciably less than more efficient (rotary screw, vane, centrifugal, etc.) types, but as you approach 25HP or higher, the cost difference just isn’t there, and the benefits of those other types start to weigh heavier in the decision.
  •  Maintenance (corrective):  Whereas they’re easy to maintain, if/when something does break, the parts (robust and rugged as they are) can get pretty pricey.
  • Noise: No way around it; these things are LOUD.  Most of the time, you’ll find them in a remote area of the facility, and/or in their own (usually sound-insulated) room.
  • High temperature:  When air is compressed, the temperature rises due to all the friction of those molecules getting shoved together…that’s going to happen with any air compressor.  All the metal moving parts in constant contact with each other, in a reciprocating model, add even more heat.
  • Oil in the air: If you’re moving a piston back & forth in a cylinder, you have to keep it lubed properly, which means you have oil adjacent to the air chamber.  Which means, no matter how well it’s built, you’re likely going to have oil IN the air chamber.

All that said, the benefits certainly do sell a good number of these compressors, quite often into situations where it just wouldn’t make sense to use any other type.  If you’re in the market for an air compressor,  you’ll want to find a local reputable air compressor dealer, and discuss your needs with them.  If those needs entail the use of engineered compressed air products, though, please feel free to give me a call to discuss.  We can make sure you’re going to ask your compressor folks the right questions.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

 

Intelligent Compressed Air: Sliding-Vane Compressors

If you’re an active reader of the EXAIR blog, you’ve seen several posts over the last year about the various different types of air compressors. From the positive-displacement style of compressors (Rotary Scroll, Rotary Screw, Single and Double Acting Reciprocating Compressors,) as well as a review of a dynamic style (Centrifugal Compressors). In this blog, I’ll be discussing another of the positive-displacement variety: The Sliding-Vane Compressor.

Sliding Vane2
Air enters from the right, and as the compression chamber volume reduces due to counterclockwise rotation, the pressure increases until the air discharges to the left

In positive-displacement type compressors, a given quantity of air or gas is trapped in a compression chamber. The volume of this air is then mechanically reduced, causing an increase in pressure. A sliding-vane compressor will consist of a circular stator that is housed in a cylindrical rotor. The rotor then has radially positioned slots where the vanes reside. While the rotor turns on its axis, the vanes will slide out and contact the bore of the stator wall. This creates compression in these “cells”. An inlet port is positioned to allow the air flow into each cell, allowing the cells to reach their maximum volume before reaching the discharge port. After passing by the inlet port, the size of the cell is reduced as rotation continues and each vane is then pushed back into its original slot in the rotor.  Compression will continue until the cell reaches the discharge port. The most common form of sliding-vane compressor is the lubricant injected variety. In these compressors, a lubricant is injected into the compression chamber to act as a lubricant between the vanes and the stator wall, remove the heat of compression, as well as to provide a seal. Lubricant injected sliding-vane compressors are generally sold in the range of 10-200 HP, with capacities ranging from 40-800 acfm.

Advantages of a lubricant injected sliding-vane compressor include:

  • Compact size
  • Relatively low purchase cost
  • Vibration-free operation does not require special foundations
  • Routine maintenance includes lubricant and filter changes

Some of the disadvantages that come with this type of compressor:

  • Less efficient than the rotary screw type
  • Lubricant carryover into the delivered air will require proper maintenance of an oil-removal filtration system
  • Will require periodic lubricant changes

With the host of different options in compressor types available on the market, EXAIR recommends talking to a reputable air compressor dealer in your area to help determine the most suitable setup based on your requirements. Once your system is up and running, be sure to contact an EXAIR Application Engineer to make sure you’re using that compressed air efficiently and intelligently!

Tyler Daniel

Application Engineer

E-mail: TylerDaniel@exair.com

Twitter: @EXAIR_TD

Diagram:  used from Compressed Air Challenge Handbook