EXAIR Digital Flow Meters

A topic that we’ve talked about here on the EXAIR blog discusses the costs of compressed air and how to use it more efficiently. How can you determine the costs of your compressed air? The first step you’ll need to take is to put a number to how much compressed air you are currently using. In order to do that you’ll need a measurement tool such as the EXAIR Digital Flowmeter.

EXAIR Digital Flow Meters

The Digital Flowmeter is available from stock for use on Schedule 40 pipe with sizes ranging from ½”-4” I.D. Sizes up to 8” for Schedule 40 and ¾”-4” for copper pipe are also available. Metric sizes are also available for 25mm, 40mm, 50mm, 63mm, 76mm, and 101mm. With a digital readout display, it’s easy to accurately monitor your compressed air usage throughout the facility. Creating a baseline of your usage will allow you to understand your compressed air demand, identify costly leaks, and replace inefficient air products.

The Digital Flowmeter installs in minutes with help from a drill guide and locating fixture to assist in mounting the Digital Flowmeter to the pipe. Two flow sensing probes are inserted into the drilled holes in the pipe. The meter then seals to the pipe once tightened. There is no need to cut, weld, or do any calibration once it is installed. With blocking rings also available, installation can be permanent or temporary. Below is a easy to follow video on how to install EXAIR’s Digital Flow Meter!

The newest addition to this product line is the Digital Flowmeter with wireless capability. Using a ZigBee® mesh network protocol, data is transmitted to an Ethernet connected gateway. This allows you to mount the Digital Flowmeter in areas that you may not be able to easily access and wirelessly monitor and graph the usage with the EXAIR Logger software. Take a peek at this video blog for a demonstration of the use of a wireless Digital Flowmeter software to compare an open pipe to an engineered Air Nozzle.

wirelessdfmpr2_1670x574
Wireless output gives you the freedom to track air usage data from any computer!

In addition to communicating wirelessly with the gateway, the Digital Flowmeters can “piggyback” off of each other to extend their range. Each meter has a range of 100’. Using multiple Digital Flowmeters within the same ZigBee® mesh network, data can be passed from meter to meter to extend the distance over which the meters can operate. These can be installed on each major leg of your compressed air system to continuously monitor usage throughout the facility.

If you’d rather go with a hard-wired data collection method, the Digital Flowmeter is also available with a USB Data Logger. Simply remove the Data Logger from the Digital Flowmeter and connect it to the USB port of your computer. The data can then be viewed directly in the accompanying software or exported into Microsoft Excel.

dataloggerPRce_559wide
Add a Data Logger for easy Value Tracking

Two special flow meter options we now offer are the Pressure Sensing Digital Flowmeters, and the Hot Tap Digital Flowmeters!

Pressure Sensing Digital Flowmeters help by generating a pressure and consumption profile of a system can help to pinpoint energy wasters such as timer-based drains that are dumping every hour versus level based drains that only open when needed. Hot Tap Digital Flowmeters offer a way to install a flow meter on a pipe that is currently under pressure. It uses a series of valves and mufflers to maintain a safe working environment for the installer.

If you’d like to get a clear view of your compressed air usage, give us a call. An Application Engineer will be happy to work with you and get the proper Digital Flowmeters installed in your facility!

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Control Air Pressure at the Point of Use with EXAIR’s Pressure Regulators

In any application necessitating the use of compressed air, pressure should be controlled to minimize the air consumption at the point of use. Pressure regulators are available to control the air pressure within the system and throttle the appropriate supply of air to any pneumatic device. As the last of the six steps to optimizing your compressed air system, controlling air at the point of use can often be overlooked. To help you achieve this, EXAIR offers a line of point of use pressure regulators to make sure you’re operating at the optimal pressure for your application.

Pressure regulators utilize a control knob that is turned to either increase/decrease tension on a spring. The spring puts a load on the diaphragm which separates internal air pressure from the ambient pressure. Typically made of a flexible rubber material, these diaphragms react very quickly to changes in the air supply. By either increasing or decreasing the flow of air based on the load on the diaphragm, downstream pressure remains fairly constant.

Regulator Internal

While one advantage of a pressure regulator is certainly maintaining consistent pressure to your compressed air devices, using them to minimize your pressure can result in dramatic savings to your costs of compressed air.

As pressure and flow are directly related, lowering the pressure supplied results in less compressed air usage. EXAIR recommends operating your Intelligent Compressed Air Products at the minimum pressure necessary to achieve a successful application. If you notice a desirable result at a pressure of 60 PSIG, or even less, there’s no need to run full line pressure. In-line point of use pressure regulators are the simplest and most reliable way to allow you to dial down the pressure to any compressed air operated product. For example, a Model 110012 Super Air Knife will consume 42 SCFM when operated at 100 PSIG. When the pressure is reduced to 60 PSIG, this drops to just 27.6 SCFM. That’s a 34% reduction in compressed air usage, just by dialing down the pressure at the point of use!

When selecting a pressure regulator for your application, it’s critical that it is appropriately sized to supply adequate volume to the point of use devices downstream. Doing so, minimizes the risk of experiencing “droop”. Droop is a decrease in outlet pressure from the specified setting due to an increase in flow rate.  Droop occurs when the demand at the point of use exceeds the volume of air that the regulator can supply. By ensuring the pressure regulator is rated to deliver sufficient volume of air, you’ll reduce the chances of experiencing droop. EXAIR offers pressure regulators in kits along with many of our products, we’ve done the hard part for you and made sure they’re properly sized!

If you’re looking for ways to help lessen the demand on your compressor, EXAIR’s team of Application Engineers will be happy to help. Reach out to us via phone, chat, or e-mail and see for yourself just how easy it can be to start saving compressed air!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Top Ten Preventive Maintenance Items For Compressed Air Systems

Anything that has moving parts is, sooner or later, going to need maintenance.  One popular school of thought is “If it ain’t broke, don’t fix it.”  One major problem with that is, when it DOES break, you HAVE to fix it before you can keep using it.  That’s where preventive maintenance comes in: you get to choose WHEN you work on it.  This allows you to do that work at planned times that are convenient, and that have the least impact on your operations.

Patrick Duff, a production equipment mechanic with the 76th Maintenance Group, takes meter readings of the oil pressure and temperature, cooling water temperature and the output temperature on one of two 1,750 horsepower compressors. Each compressor is capable of producing 4,500 cubic feet of air at 300 psi. The shop also has a 3,000 horsepower compressor that produces 9,000 cubic feet of air at 300 psi. By matching output to the load required, the shop is able to shut down compressors as needed, resulting in energy savings to the base. (Air Force photo by Ron Mullan)

Compressed air systems not only have moving parts, they have parts that air moves through.  Periodic preventive maintenance can not only keep your system running; it’ll keep it running efficiently, meaning it costs less to operate.  Different types of air compressors in different environments will have different specific requirements, but following is a decent general list of ten items it might make sense to stay on top of:

  1. Intake vents. The air your compressor pulls in is going to go through some pretty tight passages.  Particulate can do some damage in there, and some of it will end up in your system where it’ll wreak havoc on your air operated equipment too.  Take care to keep your air compressor’s intake vents clean.  Many manufacturers and service professionals recommend a weekly inspection, and cleaning as needed.
  2. Lubrication.  Don’t be fooled by the term “oil-less” in an air compressor’s description.  This often means that there’s no oil in the air end.  The drive end is going to have bearings & moving parts that are lubricated.  Again, the compressor manufacturer will likely include periodicity and procedure for this in the manual.  This should include period oil (and oil filter) changes or grease renewal.
  3. Motor bearings.  Many air compressors are either direct coupled or belt driven by an electric motor.  Checking the temperature with a contact thermometer, or monitoring for changes in the ultrasonic signature (EXAIR Model 9061 Ultrasonic Leak Detector is a quick & easy way to do this) can give you indication of pending bearing failure.
  4. Belts.  Drive belts have a finite life span.  Vibration can also affect their tension and alignment.  If you have a belt driven compressor, check these out on a regular basis to make proper adjustments to the motor slide base.
  5. Lubrication, part 2. A friend of mine had a car that leaked oil.  He carried a couple of quarts with him…it was so bad that he had to add some every few days.  He called this replenishment system “self-changing oil”.  It isn’t.  Finding and fixing oil leaks is critical from both operational and housekeeping perspectives.
  6. Dryer.  Most industrial air compressors have a system that removes moisture from the compressed air before discharging into the system.  Different types of dryers require different types of maintenance.  Desiccant and deliquescent dryers, for example, will require media changes from time to time.  Refrigerated and membrane dryers will have parts like condensers or cartridges that you have to keep clean.  Keep up with the manufacturer’s recommendations, and you’ll have one less thing to worry about.
  7. Air leaks.  Air is free.  It’s literally everywhere, in great abundance.  COMPRESSED air is expensive, which makes leaks costly.  Good news is, compressed air leaks, like failing motor bearings (see #3, above) generate an ultrasonic signature, so you can get even more use out of an EXAIR Model 9061 Ultrasonic Leak Detector.  Find & fix leaks, and start saving money today.

    In addition to compressed air leaks, there are many industrial maintenance applications for Ultrasonic Leak Detectors. Contact an EXAIR Application Engineer for details.
  8. Filtration. Almost all pneumatically operated products work best with clean, moisture free air.  The compressor’s intake vents (see #1 above) and dryer (see #6 above) are there, primarily, to protect the compressor and the distribution system, respectively.  Good engineering practice dictates the need for point-of-use filtration.  EXAIR Automatic Drain Filter Separators have 5-micron particulate elements, and a centrifugal element to ‘spin’ out moisture.  Our Oil Removal Filters have coalescing elements to catch any trace of oil, and provide additional particulate filtration to 0.03 microns.  As filter elements capture debris, they start to clog, which reduces downstream pressure.  You should change these elements when the pressure drop across a filter reaches 5psi.
  9. Condensate drains.  Even the best dryers allow trace amounts of moisture into the compressed air system…even more so if the humidity in the area is high.  Properly designed compressed air distribution systems will have strategically placed drain traps to collect this moisture and rid the system of it.  They can be automatic, timed, or manual.  Inspect them periodically for proper operation
  10. Compressed air operated products.  Last but not least, make sure you keep up the maintenance on the tools and equipment that your compressed air system is there for in the first place.  Worn or damaged parts can increase consumption…and present very real safety risks.

EXAIR Corporation manufactures quiet, safe, and efficient compressed air products to help you get the most out of your compressed air system.  If you’d like to find out more, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Two Important Safety Factors When Choosing Air Nozzles

At EXAIR, we have a statement, “Safety is everyone’s responsibility”.  And we also manufacture safe compressed air products.  In the United States, we have an organization called Occupational Safety and Health Administration, OSHA, that enforces directives for safe and healthy working environments.  They do training, outreach programs, and educational assistance for manufacturing plants.  They will also enforce these directives with heavy fines for violations.  The two most common violations with compressed air are air guns and blow-off devices are described in 29CFR 1910.242(b) for dead-end pressure/chip shielding and 29CFR 1910.65(a) for maximum allowable noise exposure.

Here is an example of a nozzle that is dangerous.  As you can see, there is only one opening where the air can come out from the nozzle.  Other types of nozzles that would fall into this same group would include copper tube, extensions, and open pipes.

Unsafe Nozzle

They are dangerous as the compressed air cannot escape if it is blocked with your body or skin.  If operated above 30 PSIG (2 bar), these nozzles could create an air embolism within the body which can cause bodily harm or death.  This is a hazard which can be avoided by using EXAIR Super Air Nozzles and Safety Air Guns.  The nozzles are designed with fins which allows the air to escape and not be blocked by your skin.  So, you can use the EXAIR Super Air Nozzles safely even above 30 PSIG (2 bar).

Unsafe Air Gun

To counteract the dead-end pressure violation, some nozzle manufacturers create a hole through the side of the nozzle (Reference photo above).  This will allow for the compressed air to escape, but, now the issue is noise level.  With an “open” hole in the nozzle, the compressed air is very turbulent and very loud.  The National Institute for Occupational Safety and Health, NIOSH, states that 70% to 80% of all hearing loss within a manufacturing plant is caused by compressed air.  OSHA created a chart to show the maximum allowable noise exposure.  This chart shows the time and noise limits before requiring hearing protection.  The EXAIR Super Air Nozzles, Super Air Knives, Super Air Amplifiers are designed to have laminar flow which is very quiet.  As an example, the model 1210 Safety Air Gun has a sound level of only 74 dBA; well under the noise exposure limit for 8 hours.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

NIOSH created an overview of how to handle hazards in the workplace.  They call it the Hierarchy of Controls to best protect workers from dangers.  The most effective way is by eliminating the hazard or substituting the hazard.  The least effective way is with Personal Protective Equipment, or PPE.  For unsafe compressed air nozzles and guns, the proper way to reduce this hazard is to substitute it with an engineered solution.

One of the last things that companies think about when purchasing compressed air products is safety.  Loud noises and dead-end pressure can be missed or forgotten.  To stop any future fines or additional personal protective equipment (PPE), it will be much cheaper to purchase an EXAIR product.  And with the Hazard Hierarchy of Controls, the first method is to remove any hazards.  The last method for control is to use PPE.  In the middle of the hierarchy is for an engineered solution.  EXAIR products are that engineered solution.  If you would like to improve the safety in your facility with your current blow-off devices, an Application Engineer can help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Picture:  Safety First by SuccoPixabay License