Basics of the Compressor Room

EXAIR Corporation has staked our reputation on a keen ability to help you get the most out of your compressed air system since 1983.  Now, the bulk of our expertise lies in the implementation and proper use of engineered products on the demand side, but we fully recognize that there are critical elements for optimization on the supply side too.  And that, quite literally, starts in the compressor room.  This is not an exhaustive, specifically detailed list, but here are some you might consider to get the most from the (again, quite literally) beginning:

  • Location.  If you’re building a new facility, or doing a major rehab of your existing one, having the compressor room as close as practical to the point(s) of use is best, IF all other things are equal.  You’ll use less pipe if you don’t have to run it so far.  You’ll also be able to use smaller diameter lines because you won’t have to worry about line loss (pressure drop due to friction as the air flows through the total length) as much.
  • Location part 2.  If all other things are NOT equal, having the compressor room close to the point of use may not be best for you.
    • Your air compressor pulls in air from the immediate environment.  It’s better to go with longer and bigger pipe in your distribution system than it is to put your compressor in a location where it’ll pull in dust & particulate from grinding operations, humidity from a boiler plant, fumes from chemical production, etc.
    • There are some pretty darn quiet air compressors out there, but there are some pretty loud ones too.  Especially in small to mid size facilities, putting the compressor in an area that upsizes the required piping is still likely a better idea, due to the downsizing of the noise levels that personnel will be exposed to.
  • Environment.  No matter where your compressor is located, the machine itself should be protected from heat and other harsh environmental elements.  That means if it’s inside the plant, the compressor room should be adequately ventilated.  In some situations, the compressor may be best installed outside the plant, in its own building or protective structure.  This should be designed to protect against solar load…in addition to the high temperature associated with a hot summer day, the sun’s rays beating down on your air compressor will radiate a tremendous amount of heat into it.
  • Filtration.  Whatever is in the air in your compressor room is going to get into your compressed air.  This is doubly problematic: particulate debris can damage the air compressor’s moving parts, and it can likewise damage your pneumatic cylinders, actuators, tools, motors, etc. as well.  Make sure the intake of your compressor is adequately filtered.
  • Maintenance.  Air compressors, like any machinery with moving parts, require periodic preventive maintenance, and corrective maintenance when something inevitably breaks down.  There should be adequate space factored in to your compressor room’s layout for this.  The only thing worse than having to fix something is not having the room to fix it without taking other stuff apart.
Patrick Duff, a production equipment mechanic with the 76th Maintenance Group, takes meter readings of the oil pressure and temperature, cooling water temperature and the output temperature on one of two 1,750 horsepower compressors. Each compressor is capable of producing 4,500 cubic feet of air at 300 psi. The shop also has a 3,000 horsepower compressor that produces 9,000 cubic feet of air at 300 psi. By matching output to the load required, the shop is able to shut down compressors as needed, resulting in energy savings to the base. (Air Force photo by Ron Mullan)

These are a few things to consider on the supply end.  If you’d like to talk about how to get the most out of your compressed air system, EXAIR is keen on that.  Give us a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Happy New Year!

Happy New Year from everyone at EXAIR!

Here’s wishing you the gift of peace and prosperity throughout 2020

Thank you for contributing to our success in 2019. We look forward to increasing your compressed air efficiency and solving your process problems throughout 2020.

EXAIR will be closed Monday and Tuesday Dec. 30 and 31 and Wednesday Jan. 1 to be with our families and friends.

image by j4p4n, Public Domain

Happy Holidays Everyone!

Once again, the celebrations and giving around the EXAIR office become common. It is a joy to take a moment away from selling air nozzles together and simply enjoy each other’s company. Fortunately for us, we are good at it!

We will also be enjoying some time away from the office, as we will be closed Dec 23, 24, and 25. While we celebrate the New Year, we will be closed Dec 30, 31 and Jan 1.

We hope that all of you, too, get some time away from your jobs to spend with friends and family. Take advantage of any time off whether is is to relax, have fun, read, nap, volunteer, or whatever YOU choose. EXAIR hopes your holidays are what you want them to be.

 

Six Steps to Optimizing Compressed Air: Step 4, Turn it Off When Not in Use

Step 4 of the Six Steps to Optimizing your compressed air is to turn off your compressed air when it is not in use. This step can be done using two simple methods either by using manual controls such as ball valves or automated controllers such as solenoid valves. Manual controls are designed for long use and when switching on and off are infrequent. Ball Valves are one of the most commonly used manual shut offs for compressed air and other fluids.

Automated controllers allow your air flow to be tied into a system or process and turn on or off when conditions have been met. Solenoid valves are the most commonly used automated control device as they operate by using an electric current to open and close the valve mechanism within. Solenoid valves are some of the more versatile flow control devices due to the fact that they open and close almost instantaneously. Solenoid valves can be used as manual controls as well by wiring them to a switch or using simple programming on a PLC to turn the valve on or off using a button.

EXAIR’s Solenoid Valves
EXAIR’s Electronic Flow Controller (EFC)

 

Some good examples of automated controllers are EXAIR’s Electronic Flow Controller (a.k.a. EFC) and EXAIR’s Thermostat controlled Cabinet Coolers.  

The EFC system uses a photo eye to detect when an object is coming down the line and will turn on the air for a set amount of time of the users choosing. This can be used to control the airflow for all of EXAIR’s products. EXAIR’s Thermostat controlled Cabinet Coolers are used to control the internal temperature of a control cabinet or other enclosures. This is done by detecting the internal temperature of your cabinet and when it has exceeded a temperature which could damage electrical components it will open the valve until a safe temperature has been reached, then turn off.    

By turning off your compressed air, whether it be with manual or automated controllers, a company can minimize wasted compressed air and extend the longevity of the air compressor that is used to supply the plants air. The longevity of the air compressor is increased due to reduced run time since it does not need to keep up with the constant use of compressed air. Other benefits include less use of compressed air and recouped cost of compressed air. 

EXAIR’s Ball Valves sizes 1/4″ NPT to 1-1/4″ NPT

If you have questions about our compressed air control valves or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Leaks and Their Impact on Your Compressed Air System

Leaks are one of the major wastes of compressed air that could happen in a system. But what affect can leaks have on your system and how can these leaks be found? Total leaks in a compressed air line can account for wasting almost 20-30% of a compressors output. These leaks can commonly be found in areas were a pipe comes in contact with a joint, connections to devices that use the compressed air, and storage tanks.

There are four main affects that a leak in your compressed air system can have and they are as follows; 1) cause in pressure drop across the system, 2) shorten the life of almost all supply system equipment, 3) increased running time of the compressor, and 4) unnecessary compressor capacity.

  • A pressure drop across your compressed air system can lead to a decreased in efficiency of the end use equipment (i.e. an EXAIR Air Knife or Air Nozzle). This adversely effects production as it may take longer to blow off or cool a product or not blow off the product well enough to meet quality standards.
  • Leaks can shorten the life of almost all supply system components such as air compressors, this is because the compressor has to continuously run to make up for the air loss from the leak. By forcing the equipment to continuously run or cycle more frequently means that the moving parts in the compressor will wear down faster.
  • An increased run time due to leaks can also lead to more maintenance on supply equipment for the same reasons as to why the life of the compressor is shortened. The increase stress on the compressor due to unnecessary running of the compressor.
  • Leaks can also lead to adding unnecessary compressor size. The wasted air that is being expelled from the leak is an additional demand in your system. If leaks are not fixed it may require a larger compressor to make up for the loss of air in your system.
EXAIR’s Ultrasonic Leak Detector

All of these effects are an additional cost that is tacked onto the already existing utility cost of your compressed air. But luckily there are ways to find these leaks and patch them up before it can get to out of control. One of the ways to help find leaks in your system is the EXAIR’s affordable Ultrasonic Leak Detector. This leak detector uses ultrasonic waves to detect were costly leaks can be found so that they can be patched or fixed.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.    

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Happy Thanksgiving!

Happy Thanksgiving from  EXAIR!

We are thankful for your business and appreciate you relying on EXAIR to solve your process and manufacturing problems. Take advantage of any time off you may have and enjoy your family, friends and food!

We will be closed over Thanksgiving on Thursday and Friday November 28 and 29, 2019.

 

 

EXAIR Super Air Knives: Customized for You

In a recent blog “EXAIR Super Air Knives: Overview”, I shared the features and benefits that puts the “Super” in the Super Air Knives.  But, let’s not define ourselves by our widest range of lengths and materials that we stock.  EXAIR can also customize the Super Air Knives to fit your requirements.  Many manufacturers like to make their standard items and expect the customers to adapt to their design.  But at EXAIR, customer service is our primary focus.

EXAIR manufactures our products at one location in Cincinnati, Ohio.  So, this gives us the flexibility to do many things like making adaptive configurations with our Super Air Knives.  Here are some examples that our customers requested.

  • Special lengths: EXAIR stocks standard incremental lengths from 3” (76mm) up to 108” (2.74 meters) in aluminum, 303SS, and 316SS materials; or 3” (76mm) to 54” (1,372mm) for PDVF Super Air Knives. But sometimes, the Super Air Knife has to fit into a specific area where a standard length will not work.  This is where EXAIR exceeds, and we can make any length metric or imperial between the ranges above.

    PVC Super Air Knife
  • Other materials: There isn’t a single material that is inert to all chemicals. In some rare cases, the environment can chemically attack our Stainless Steel or PVDF Super Air Knives.  So, a different material may have to be used.  For the customer above, they required a PVC material for a phosphorous environment.

    Curved and Thin Super Air Knives
  • Critical Dimensions: When the Super Air Knives have to adapt inside machines or in tight areas, we can modify the profile.  We have two special applications (reference above) that needed a design change for fit and function.  A curved Super Air Knife was used to hold tubes on a rotary table; and a thin Super Air Knife that was only 11/16” (17.5mm) thick cleaned a mold for circuit chips.

    Super Air Knife special mounting
  • Add-ons: EXAIR understands the importance of connecting to our Super Air Knives to get the greatest performance.  Our stock product has ¼” NPT inlet air ports along the bottom and one at each end.  We have ¼” – 20 threaded holes for mounting along the bottom as well.  But if you want threaded holes in a specific location for mounting or need the inlet air ports to be metric threads, EXAIR can accommodate these features.

    Double-sided Super Air Knife
  • Situational Applications:  Super Air Knives can have complex or simple changes depending on the application.  As an example, EXAIR created a design for a double-sided Super Air Knife to blow a laminar stream of air 180 degrees apart (reference photo above).   A simpler proposal was to replace the cap screws in a 316SS Super Air Knife with hygienic screws for food applications to remove crevices for bacterial growth.
  • OE Protection: In today’s market, it is important to protect your business.  At EXAIR, we can make a special Super Air Knife to blow, dry, or cool in your custom machines.  With a unique model number, EXAIR can help support and protect your business for future and replacement business.

Remember, your imagination is the beginning of creation.  If you cannot find a specific design to be used in your compressed air application, don’t give up.  Contact an Application Engineer at EXAIR to see if we can help you.  We have a team of engineers that can evaluate the fit and function to create a “Super” blow-off solution.  For the customers above, we were able to propose a unique Super Air Knife to work in their application; not the other way around.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb