Top Ten Preventive Maintenance Items For Compressed Air Systems

Anything that has moving parts is, sooner or later, going to need maintenance.  One popular school of thought is “If it ain’t broke, don’t fix it.”  One major problem with that is, when it DOES break, you HAVE to fix it before you can keep using it.  That’s where preventive maintenance comes in: you get to choose WHEN you work on it.  This allows you to do that work at planned times that are convenient, and that have the least impact on your operations.

Patrick Duff, a production equipment mechanic with the 76th Maintenance Group, takes meter readings of the oil pressure and temperature, cooling water temperature and the output temperature on one of two 1,750 horsepower compressors. Each compressor is capable of producing 4,500 cubic feet of air at 300 psi. The shop also has a 3,000 horsepower compressor that produces 9,000 cubic feet of air at 300 psi. By matching output to the load required, the shop is able to shut down compressors as needed, resulting in energy savings to the base. (Air Force photo by Ron Mullan)

Compressed air systems not only have moving parts, they have parts that air moves through.  Periodic preventive maintenance can not only keep your system running; it’ll keep it running efficiently, meaning it costs less to operate.  Different types of air compressors in different environments will have different specific requirements, but following is a decent general list of ten items it might make sense to stay on top of:

  1. Intake vents. The air your compressor pulls in is going to go through some pretty tight passages.  Particulate can do some damage in there, and some of it will end up in your system where it’ll wreak havoc on your air operated equipment too.  Take care to keep your air compressor’s intake vents clean.  Many manufacturers and service professionals recommend a weekly inspection, and cleaning as needed.
  2. Lubrication.  Don’t be fooled by the term “oil-less” in an air compressor’s description.  This often means that there’s no oil in the air end.  The drive end is going to have bearings & moving parts that are lubricated.  Again, the compressor manufacturer will likely include periodicity and procedure for this in the manual.  This should include period oil (and oil filter) changes or grease renewal.
  3. Motor bearings.  Many air compressors are either direct coupled or belt driven by an electric motor.  Checking the temperature with a contact thermometer, or monitoring for changes in the ultrasonic signature (EXAIR Model 9061 Ultrasonic Leak Detector is a quick & easy way to do this) can give you indication of pending bearing failure.
  4. Belts.  Drive belts have a finite life span.  Vibration can also affect their tension and alignment.  If you have a belt driven compressor, check these out on a regular basis to make proper adjustments to the motor slide base.
  5. Lubrication, part 2. A friend of mine had a car that leaked oil.  He carried a couple of quarts with him…it was so bad that he had to add some every few days.  He called this replenishment system “self-changing oil”.  It isn’t.  Finding and fixing oil leaks is critical from both operational and housekeeping perspectives.
  6. Dryer.  Most industrial air compressors have a system that removes moisture from the compressed air before discharging into the system.  Different types of dryers require different types of maintenance.  Desiccant and deliquescent dryers, for example, will require media changes from time to time.  Refrigerated and membrane dryers will have parts like condensers or cartridges that you have to keep clean.  Keep up with the manufacturer’s recommendations, and you’ll have one less thing to worry about.
  7. Air leaks.  Air is free.  It’s literally everywhere, in great abundance.  COMPRESSED air is expensive, which makes leaks costly.  Good news is, compressed air leaks, like failing motor bearings (see #3, above) generate an ultrasonic signature, so you can get even more use out of an EXAIR Model 9061 Ultrasonic Leak Detector.  Find & fix leaks, and start saving money today.

    In addition to compressed air leaks, there are many industrial maintenance applications for Ultrasonic Leak Detectors. Contact an EXAIR Application Engineer for details.
  8. Filtration. Almost all pneumatically operated products work best with clean, moisture free air.  The compressor’s intake vents (see #1 above) and dryer (see #6 above) are there, primarily, to protect the compressor and the distribution system, respectively.  Good engineering practice dictates the need for point-of-use filtration.  EXAIR Automatic Drain Filter Separators have 5-micron particulate elements, and a centrifugal element to ‘spin’ out moisture.  Our Oil Removal Filters have coalescing elements to catch any trace of oil, and provide additional particulate filtration to 0.03 microns.  As filter elements capture debris, they start to clog, which reduces downstream pressure.  You should change these elements when the pressure drop across a filter reaches 5psi.
  9. Condensate drains.  Even the best dryers allow trace amounts of moisture into the compressed air system…even more so if the humidity in the area is high.  Properly designed compressed air distribution systems will have strategically placed drain traps to collect this moisture and rid the system of it.  They can be automatic, timed, or manual.  Inspect them periodically for proper operation
  10. Compressed air operated products.  Last but not least, make sure you keep up the maintenance on the tools and equipment that your compressed air system is there for in the first place.  Worn or damaged parts can increase consumption…and present very real safety risks.

EXAIR Corporation manufactures quiet, safe, and efficient compressed air products to help you get the most out of your compressed air system.  If you’d like to find out more, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Two Important Safety Factors When Choosing Air Nozzles

At EXAIR, we have a statement, “Safety is everyone’s responsibility”.  And we also manufacture safe compressed air products.  In the United States, we have an organization called Occupational Safety and Health Administration, OSHA, that enforces directives for safe and healthy working environments.  They do training, outreach programs, and educational assistance for manufacturing plants.  They will also enforce these directives with heavy fines for violations.  The two most common violations with compressed air are air guns and blow-off devices are described in 29CFR 1910.242(b) for dead-end pressure/chip shielding and 29CFR 1910.65(a) for maximum allowable noise exposure.

Here is an example of a nozzle that is dangerous.  As you can see, there is only one opening where the air can come out from the nozzle.  Other types of nozzles that would fall into this same group would include copper tube, extensions, and open pipes.

Unsafe Nozzle

They are dangerous as the compressed air cannot escape if it is blocked with your body or skin.  If operated above 30 PSIG (2 bar), these nozzles could create an air embolism within the body which can cause bodily harm or death.  This is a hazard which can be avoided by using EXAIR Super Air Nozzles and Safety Air Guns.  The nozzles are designed with fins which allows the air to escape and not be blocked by your skin.  So, you can use the EXAIR Super Air Nozzles safely even above 30 PSIG (2 bar).

Unsafe Air Gun

To counteract the dead-end pressure violation, some nozzle manufacturers create a hole through the side of the nozzle (Reference photo above).  This will allow for the compressed air to escape, but, now the issue is noise level.  With an “open” hole in the nozzle, the compressed air is very turbulent and very loud.  The National Institute for Occupational Safety and Health, NIOSH, states that 70% to 80% of all hearing loss within a manufacturing plant is caused by compressed air.  OSHA created a chart to show the maximum allowable noise exposure.  This chart shows the time and noise limits before requiring hearing protection.  The EXAIR Super Air Nozzles, Super Air Knives, Super Air Amplifiers are designed to have laminar flow which is very quiet.  As an example, the model 1210 Safety Air Gun has a sound level of only 74 dBA; well under the noise exposure limit for 8 hours.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

NIOSH created an overview of how to handle hazards in the workplace.  They call it the Hierarchy of Controls to best protect workers from dangers.  The most effective way is by eliminating the hazard or substituting the hazard.  The least effective way is with Personal Protective Equipment, or PPE.  For unsafe compressed air nozzles and guns, the proper way to reduce this hazard is to substitute it with an engineered solution.

One of the last things that companies think about when purchasing compressed air products is safety.  Loud noises and dead-end pressure can be missed or forgotten.  To stop any future fines or additional personal protective equipment (PPE), it will be much cheaper to purchase an EXAIR product.  And with the Hazard Hierarchy of Controls, the first method is to remove any hazards.  The last method for control is to use PPE.  In the middle of the hierarchy is for an engineered solution.  EXAIR products are that engineered solution.  If you would like to improve the safety in your facility with your current blow-off devices, an Application Engineer can help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Picture:  Safety First by SuccoPixabay License

The Impressive ROI of an Engineered Air Nozzle

You may have asked…why should I switch over to an engineered air nozzle if my system already works? Or…How can air nozzles be much different?

Manufacturing has always been an advocate for cost savings, where they even have job positions solely focused on cost savings. Return on Investment (ROI) is a metric they look toward to help make good decisions for cost savings.  The term is used to determine the financial benefits associated with the use of more efficient products or processes compared to what you are currently using. This is like looking at your homes heating costs and then changing out to energy efficient windows and better insulation. The upfront cost might be high but the amount of money you will save over time is worth it.

Model 1100 Super Air Nozzles can save compressed air dollars and increase safety

But how is ROI calculated? It is very simple to calculate out your potential savings of using one of EXAIR’s Intelligent Engineered Compressed Air Products. If you would rather not do the calculations out yourself then we can do it for you by sending the item in question to our Efficiency Lab Testing. The Efficiency Lab Testing is a free service that we offer to show you the possible savings by switching to one of our products.

The following is a simple ROI  calculation for replacing open blowoffs with an EXAIR Super Air Nozzle:

  • ¼” Copper Pipe consumes 33 SCFM at 80 psig (denoted below as CP)
  • A Model 1100 ¼” Super Air Nozzle can be used to replace and only uses 14 SCFM at 80 psig (denoted below as EP)

Calculation:

(CP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for Copper Pipe  

(33) * (60) * (8) * (5) * (52) = 4,118,400 SCF

(EP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for EXAIR Product  

               (14) * (60) * (8) * (5) * (52) = 1,747,200 SCF

Air Savings:

SCF used per year for Copper Pipe – SCF used per year for EXAIR Product = SCF Savings

               4,118,400 SCF – 1,747,200 SCF = 2,371,200 SCF in savings

If you know the facilities cost to generate 1,000 SCF of compressed air you can calculate out how much this will cost you would save. If not, you can us $0.25 to generate 1,000 SCF which is the value used by the U.S. Department of Energy to estimate costs.

Yearly Savings:

                (SCF Saved) * (Cost / 1000 SCF) = Yearly Savings

                                (2,371,200 SCF) * ($0.25 / 1000 SCF) = $592.80 annual Savings

With the simple investment of $42 (as of date published) you can calculate out the time it will take to pay off the unit.

Time Until payoff:

                (Yearly Savings) / (5 days/week * 52 weeks/year) = Daily Savings

                                ($592.80/year) / (5 days/week * 52 weeks/year) = $2.28 per day

                (Cost of EXAIR Unit) / (Daily Savings) = Days until product has been paid off

                                ($42) / ($2.28/day) = 17.9 days  

As you can see it doesn’t have to take long for the nozzle to pay for itself, and then continue to contribute toward your bottom line. 

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook