Compressed Air Membrane Dryers: What are They? How do They Work?

A critical component on the supply side of your compressor system is the dryer. Atmospheric air contained within a compressed air system contains water vapor. The higher the temperature of the air, the more volume of moisture that air is capable of holding. As air is cooled, this water vapor can no longer be contained and this water falls out in the form of condensation. The temperature where this water will drop out is referred to as the dew point.

At a temperature of 75°F and 75% relative humidity, approximately 20 gallons of water will enter a 25HP compressor during a 24-hour period. As air is compressed, this water becomes concentrated. Since it’s heated during the compression process, this water stays in a vapor form. When this air cools further downstream, this vapor condenses into droplet form.

Moisture within the compressed air system can result in rust forming on the inside of the distribution piping, process failure due to clogged frozen lines in colder weather, false readings from instruments and controls, as well as issues with the point of use products installed within the system.

The solution to this problem is to install a dryer system. We’ve spent some time here on the EXAIR blog reviewing refrigerant dryers , desiccant dryersdeliquescent dryers, and heat of compression dryers. For the purposes of this blog, I’m going to focus on one of the newer styles on the market today: the membrane dryer.

Membrane Dryer

In a membrane dryer, compressed air is forced through a specially designed membrane that permits water vapor to pass through faster than the air. The water vapor is then purged along with a small amount of air while the rest of the compressed air passes through downstream. Generally, the dew point after the membrane dryer is reduced to about 40°F with even lower dew points also possible down to as low as -40°F!

With such low dew points possible, it makes a membrane dryer an optimal choice in outdoor applications that are susceptible to frost in colder climates. Membrane dryers also are able to be used in medical and dental applications where consistent reliability is critical.

A membrane dryer does not require a source of electricity in order to operate. The compact size makes it simple to install without requiring a lot of downtime and floor space. Since they have no moving parts, maintenance needed is minimal. Most often, this maintenance takes the form of checking/replacing filter elements just upstream of the membrane dryer. The membrane itself does need to be periodically replaced, an indicator on the membrane dryer will display when it needs to be changed. If particular instruments or processes in your facility are sensitive to moisture, a membrane dryer might be the best option.

However, there are some drawbacks to these types of dryers. They’re limited to low capacity installations, with models ranging from less than 1 SCFM up to 200 SCFM. This makes them more applicable for point-of-use installations than for an entire compressed air system. The nature in which the membrane dryer works necessitates some of the air to be purged out of the system along with the moisture. To achieve dew points as low as -40°F, this can equate to as much as 20% of the total airflow. When proper filtration isn’t installed upstream, oils and lubricants can ruin the dryer membrane and require premature replacement.

Make sure and ask plenty of questions of your compressor supplier during installation and maintenance of your system so you’re aware of the options out there. You’ll of course want to make sure that you’re using this air efficiently. For that, EXAIR’s wide range of engineered Intelligent Compressed Air Products fit the bill. With a variety of products available for same-day shipment from stock, we’ve got you covered.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

When Air Flow, Not Force, Makes The Difference

I recently had the pleasure of talking with a CAGI Certified Compressed Air Systems Specialist, who was working with a client to improve energy efficiency in the use of their compressed air. One particular application that was particularly taxing on their system is the use of hose barb fittings (basically, an open blow device) to fold over a cardboard box flap on a packaging line.

We discussed the possibility of trying something out, but the client wanted to look at some data, showing what their expected savings could be. Hose barb fittings are quite common, and they DO focus the flow of a compressed air discharge into a forceful little blast, which is quite effective at folding a box flap.

The client’s main concern was the force applied. In truth, there’s no better way to maximize force than by discharging a compressed gas directly through an open ended device. Excessive force, however, isn’t the only way to solve an application like this, as I proved in a test in our Efficiency Lab.  Here’s what happened:

EXAIR 1″ and 2″ Flat Super Air Nozzles can be fitted with a variety of shims for variable performance.
  • All of them folded the box flap easily.  The Model HP1125 folded it just as far as the hose did in the test I rigged, and with a 37% reduction in compressed air consumption.  The others folded it very nearly as far, with 62% (Model 1122) and 70% (Model HP1126) reductions.
  • Not to mention the drastic reduction in noise levels.

Lastly, I documented it all in a short video:

We field calls all the time from callers wanting to know how much force our Intelligent Compressed Air Products can generate.  Applications like part ejection do indeed require a certain amount of force to, say, move an object in motion from a conveyor belt…that’s just physics.  Most blow off applications (and folding over a flat box flap, for instance,) just need air flow…which engineered products from EXAIR Corporation can handle just fine, and at a fraction of the compressed air use & sound levels associated with open end blowing devices.

If you’d like to find out how EXAIR Corporation can help save you money on compressed air consumption, and ear plugs, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

 

 

Air! image courtesy of Barney Moss  Creative Commons License

Henri Coanda: Founder of The Coanda Effect (1886-1972)

EXAIR uses the Coanda effect in many of our products. Henri Coanda is an important figure in the world of fluid dynamics and aerodynamics.

Henri Coanda was a prominent Romanian Inventor and aerodynamics pioneer is known for the creation of the Coanda-1910 experimental plane as well as discovering the Coanda effect. On June 7, 1886 Henri was born in Bucharest Romania to General Constantin Coanda and Aida Danet. In 1899 Henri’s father who desired him to have a military career had him transfer to a Military High School for additional years of schooling, where he graduated with the rank of Sergeant Major. Continuing his studies, he went on to technical school back in Bucharest for Artillery, Military, and Naval Engineering. In 1904 he was sent to an artillery regiment in Germany where he would enroll in Technische Hochshule. Henri did not give up on studying and in 1907 went to Montefiore Institute in Liege, Belgium, where he met Gianni Caproni.

In 1910 Henri and Gianni began a partnership to construct an experimental aircraft which was later called the Coanda-1910. The Coanda-1910 was unlike any other aircraft of its time as it had no propeller; instead it sported an oddly shaped front end with built-in rotary blades arranged in a swirl pattern. These blades were driven by an internal turbine screw that would suck air in through the turbine while exhausting the gases out of the rear, propelling the plane forward. This initial jet engine was quite impressive for the time, but sadly nobody believed it would ever fly and is believed that it never did achieve flight. Coanda is not credited with the invention of the jet engine, but his technology spurred the future of aviation into the future.

During World War 2 Henri spent his time developing the turbo-propeller drive system from his 1910 Biplane. After World War 2 had ended Henri began furthering his research on the Coanda Effect which would become the basis for several investigations into entrained and augmented flow of fluids. Later on in 1969 Henri would spend the last of his days in Romania serving as Director of the Institute for Scientific and Technical Creation. Coanda died on November 25, 1972 in his home town of Bucharest.

Here at EXAIR we have taken Henri Coanda’s, Coanda Effect and applied it to a number of our products to help amplify total airflow and save on compressed air.  The most notable product lines are our Air Amplifiers, Air Nozzles, and Air Knives – which are some of the most efficient products of their kind. These products can help lower your compressed air demand. 

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Air Compressor Motors And Controls

Electric motors are by far the most popular drivers for industrial air compressors.  Indeed, they are the prime movers for a great many types of industrial rotating equipment.  In their simplest form of operation, rotary motion is induced when current flows through a conductor (the windings) in the presence of a magnetic field (usually by electricity inducing a magnetic field in the rotor.)  In the early days, you’d start one up by flipping a big lever called a knife switch.

Example of a knife switch

These are cumbersome and inherently dangerous…the operators literally have their hand(s) on the conductor.  If the insulation fails, if something mechanical breaks, if they fail to make full contact, electrocution is a very real risk.  Over time, motor starters came in to common use.  Early in their development, they were more popular with higher HP motors, but soon were made for smaller motors as well.

There are several types of modern motor starters:

Full Voltage Starters: The original, and simplest method.  These are similar in theory to the old knife switches, but the operator’s hands aren’t right on the connecting switch.  Full line voltage comes in, and amperage can peak at up to 8 times full load (normal operating) amperage during startup.  This can result in voltage dips…not only in the facility itself, but in the neighborhood.  Remember how the lights always dim in those movies when they throw the switch on the electric chair?  It’s kind of like that.

Reduced Voltage Starters: These are electro-mechanical starters.  Full line voltage is reduced, commonly to 50% initially, and steps up, usually in three increments, back to full.  This keeps the current from jumping so drastically during startup, and reduces the stress on mechanical components…like the motor shaft, bearings, and coupling to the compressor.

Solid State (or “Soft”) Starters: Like the Reduced Voltage types, these reduce the full line voltage coming in as well, but instead of increasing incrementally, they gradually and evenly increase the power to bring the motor to full speed over a set period of time.  They also are beneficial because of the reduced stress on mechanical components.

The Application Engineering team at EXAIR Corporation prides ourselves on our expertise of not only point-of-use compressed air application & products, but a good deal of overall system knowledge as well.  If you have questions about your compressed air system, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook