Custom Products Designed Just for Your Application

Because EXAIR designs and manufactures our own products, if you need something a little different we can probably help. This is true throughout our entire product line, the following examples are of our Line Vac products.

Do you have an application that may not be best served by one of our stock Line Vac products? While we have quite a variety of both materials, sizes, and connection types sometimes a special application requires a special solution. For this reason,  EXAIR manufactures special Line Vacs suited EXACTLY for the type of application or environment that it’ll be operating in.

This special Miniature Line Vac was manufactured with barb fittings and designed for a manufacturer of integrated circuit chips. It was used to remove microscopic debris during the chip making process. It’s small overall footprint makes it ideal for applications requiring tight mounting conditions. It has also been used by other manufacturers to vacuum liquid and chips from small drilled holes. While the Line Vac isn’t typically suitable for liquids, the higher vacuum level associated with the smaller Line Vacs makes it a possibility.

ldlvspec1

This next special Line Vac was used to convey fine powders or granulated materials from a hopper. While this is a pretty straight-forward application for a standard Line Vac, their material could sometimes be moist which would pack the tube and restrict the flow of material. The funnel-shaped design created a suction on the existing tube that permitted a continuous product flow.

ldlvspec5

This flanged Line Vac was used to retrofit existing machinery to remove acidic vapors resulting from surface etching of a silicon wafer. Where this would typically be a nice fit for a Stainless Steel Air Amplifier, the existing exhaust piping was lengthy with many bends that would have caused back pressure on any Air Amplifiers. In this case, they needed the high velocity airflow from the directed nozzles of the Line Vac to overcome this downstream resistance.

ldlvspec3

In addition to making Line Vacs in different shapes and sizes, we can also use special materials. In this instance, the special flanged Line Vac was manufactured out of PVDF (Polyvinylidene Flouride) due to its superior corrosive resistance. The Line Vac would be regularly exposed to a chloride wash that would corrode even stainless steel. It was also manufactured with special QF flanges to allow for easy assembly and removal of the conveying hoses for cleaning purposes.

ldlvspec4

As you can see the sky is the limit when it comes to potential styles of Line Vacs. Don’t think just because you don’t find something you need in the catalog that EXAIR can’t do it! We’ll create special manufactured products for just about anything that you can find in the catalog, not just the Line Vacs. Whether it’s custom-length Super Air Knives or special Air Amplifiers we can make it happen. Reach out to an Application Engineer today for help designing a solution, just for YOU!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Super Air Knife with a Plumbing Kit Removes Gypsum from a Conveyor Belt

Plumbing Kits

A gypsum facility was having issues in losing powder from the tailings in their conveying system.  The conveyor moved gypsum from their processing plant to an outside silo bin location for loading and transportation.  The conveyor that they used was 60” wide.  As the conveyor went around the end to dump the gypsum powder, some of the material would stick to the belt and collect on the floor underneath.  Depending on production rates, they would have to stop the operation to clean up the floor which added additional hours for custodial work.  The customer sent a picture of the problem and wondered if EXAIR could help them with this application.

The facility did an annual cost projection to determine the loss of money from the gypsum material collecting under the conveyor.  The custodial cost to clean up the excess powder was roughly $45,000/year.  The unscheduled downtime was estimated at 115 hours per year.  (They did not share the loss of dollars in production to EXAIR.)  But it was large enough that they needed a solution from EXAIR.  (The photo below is similar to the same application as written by Lee Evans: “EXAIR Super Air Knives Improve Process in an Aluminum Rodding Shop“.)

Powder collecting under conveyor

I suggested a model 110260PKI Super Air Knife Kit for this application.  The Super Air Knife was 60” in length to cover the conveyor belt.  The kit included a filter, a regulator, and a shim set to “dial” in the minimum amount of force to remove the material.  This gives the customer the most flexibility when using an EXAIR Super Air Knife.  The “PKI” suffix at the end of the model number indicates our Plumbing Kit.  This kit which is Installed on the Super Air Knife allows for ease of installation to compressed air connections and it also allows for the proper airflow to get a consistent blow-off across the entire length of the Super Air Knife.

At EXAIR, we pride ourselves in energy efficiency.  Compressed air is expensive to make, so why not use it as efficiently as you can?  The Super Air Knife has a 40:1 amplification ratio which allows 40 parts of ambient “free” air for every 1 part of compressed air.  And, with the “dirty” environment at the gypsum facility, the Super Air Knife would not be affected as they do not require a motor that can fail or a maintenance program to perform.  After installing the model 110260PKI, the gypsum powder was no longer collecting on the floor underneath.  If we look at the cost of removing the hourly rate of the custodian, the Return on Investment, ROI, was only 27 days (and this did not include the increase in production rates).

Spillage is wasteful, costly, and time consuming to cleanup.  If you have excess waste from your conveying system, EXAIR will have the product to help you.  For the gypsum facility above, the Super Air Knife Kit made it possible to increase production efficiencies with a short ROI.  You can contact an Application Engineer to review your application and see if we can improve your conveying operation.

John Ball

Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Video Blog: EXAIR Efficiency Lab

The video below is a brief introduction to the EXAIR Efficiency Lab, a free service provided by EXAIR for customers within the USA and Canada.

If you have a single point blowoff that does not have an engineered nozzle, or if you have a wider format blowoff, manifold or home-made drilled pipe, contact an Application Engineer with EXAIR and let us help you to reduce your energy waste. Following are some examples of product where we have helped to save some serious air and reduced noise levels which heightens employee comfort.

Non-engineered blowoffs
Drilled and soldered copper pipe.
Custom manufactured inefficient pipe blowoff

 

The EXAIR Efficiency Lab

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Keys to an Efficient Compressed Air System

How do I make our compressed air system efficient?

This is a critical question which plagues facilities maintenance, engineering, and operational personnel.  There are concerns over what is most important, how to approach efficiency implementation, and available products/services to assist in implementation.  In order to address these concerns (and others), we must first look at what a compressed air system is designed to do and the common disruptions which lead to inefficiency.

The primary object of a compressed air system is to transport the compressed air from its point of production (the compressors) to its point of use (applications) in sufficient quantity and quality, and at adequate pressure for proper operation of air-driven devices.[1]  In order for a compressed air system to do so, the compressed air must be able to reach its intended destination in proper volume and pressure.  And, in order to do this, pressure drops due to improper plumbing must be eliminated, and compressed air leakage must be eliminated/kept to a minimum.

But, before these can be properly addressed, we must create a pressure profile to determine baseline operating pressures and system needs.  After developing a pressure profile and creating a target system operating pressure, we can move on to the items mentioned above – plumbing and leaks.

Proper plumbing and leakage elimination

The transportation of the compressed air happens primarily via piping, fittings, valves, and hoses – each of which must be properly sized for the compressed air-driven device at the point of use.  If the compressed air piping/plumbing is undersized, increased system (main line) pressures will be needed, which in-turn create an unnecessary increase in energy costs.

In addition to the increased energy costs mentioned above, operating the system at a higher pressure will cause all end use devices to consume more air and leakage rates to increase.  This increase is referred to as artificial demand, and can consume as much as 30% of the compressed air in an inefficient compressed air system.[2]

But, artificial demand isn’t limited to increased consumption due to higher system pressures.  Leaks in the compressed air system place a tremendous strain on maintaining proper pressures and end-use performance.  The more leaks in the system, the higher the main line pressure must be to provide proper pressure and flow to end use devices.  So, if we can reduce leakage in the system, we can reduce the overall system pressure, significantly reducing energy cost.

 

How to implement solutions

Understanding the impact of an efficient compressed air system is only half of the equation.  The other half comes down to implementation of the solutions mentioned above.  In order to maintain the desired system pressure we must have proper plumbing in place, reduce leaks, and perhaps most importantly, take advantage of engineered solutions for point-of-use compressed air demand.

The EXAIR Ultrasonic Leak Detector being used to check for leaks

Once proper plumbing is confirmed and no artificial demands are occurring due to elevated system pressures, leaks in the system should be addressed.  Compressed air leaks are common at connection points and can be found using an ultrasonic noise sensing device such as our Ultrasonic Leak Detector (ULD).  The ULD will reduce the ultrasonic sound to an audible level, allowing you to tag leaks and repair them.  We have a video showing the function and use of the ULD here, and an excellent writeup about the financial impact of finding and fixing leaks here.

The EXAIR catalog – full of engineered solutions for point-of-use compressed air products.

With proper plumbing in place and leaks fixed, we can now turn our attention to the biggest use of compressed air within the system – the intended point of use.  This is the end point in the compressed air system where the air is designed to be used.  This can be for blow off purposes, cleaning, conveying, cooling, or even static elimination.

These points of use are what we at EXAIR have spent the last 34 years engineering and perfecting.  We’ve developed designs which maximize the use of compressed air, reduce consumption to absolute minimums, and add safety for effected personnel.  All of our products meet OSHA dead end pressure requirements and are manufactured to RoHS, CE, UL, and REACH compliance.

If you’re interested in maximizing the efficiency of your compressed air system, contact one of our Application Engineers.  We’ll help walk you through the pressure profile, leak detection, and point-of-use engineered solutions.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

[1] Compressed Air Handbook, Compressed Air & Gas Institute, pg. 204

[2] Energy Tips – Compressed Air, U.S. Department of Energy

Video Blog: The Monetary Benefits of an Engineered Solution

This video highlights the value and benefits of an engineered blow off solution.  We take a homemade open pipe blowoff and replace it with an EXAIR model 1100 Super Air Nozzle.  This air nozzle is then controlled through our Electronic Flow Controller, allowing for intermittent On/Off of the compressed air flow.  And, these solutions are wirelessly monitored via Zigbee network using our Wireless Digital Flowmeter.  Implementing these solutions results in a compressed air reduction of over 90%!!!

 

Full calculations along with supporting flow values (pulled from the same data shown in the video above) are shown below.

Screengrab of the flow values shown in the video above. Click for larger image.

The open pipe:

The first compressed air flow values to show up on the EXAIR Logger are for the open pipe blow off.  At 1 BAR operating pressure, this “solution” consumes 22.3 SCFM of compressed air.  At a cost of $0.25 for every 1,000 cubic feet of compressed air, this nozzle will cost $695.76 to operate 8 hours per day, 5 days per week, 52 weeks per year.

The engineered EXAIR Super Air Nozzle

Model 1100 EXAIR Super Air Nozzles consumes 4.7 SCFM at an operating pressure of 1 BAR – a reduction of 79% compared to the open pipe.  These savings prove out in terms of operating cost as well – $146.64 per year, compared to $695.76.

The engineered EXAIR Super Air Nozzle with Electronic Flow Control (EFC)

By controlling the “ON” time for this application with an EFC, we are only blowing for 32% of the time for each minute of operation which changes the required compressed air flow from 4.7 SCFM to a peak value of 1.5 SCFM. This control saves an additional 68% of compressed air flow.  And, these savings are compounded by eliminating the need for constant compressed air flow.  Total annual operating cost for the EXAIR 1100 Super Air Nozzle with Electronic Flow Control is just $46.80.

Implementing an engineered solution can have a TREMENDOUS impact on energy costs and operating costs in your facility.  Compressed air is the most expensive utility to produce and consume, making the impact of proper solutions of high value to any business.  Let us help you utilize engineered compressed air solutions in your facility by contacting an EXAIR Application Engineer today.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Siphon Fed Atomizing Nozzle Improves Roll Forming Process

Last week I worked with a gutter manufacturer who was looking for a way to spray a light coating of vanishing oil on the rollers of a forming machine. Roll forming is commonly used when needing to maintain a constant and consistent shape or feature across the length of the part. In this particular case, a sheet of aluminum, used as a cover for the gutter, is fed into the machine where it passes over a series of dyes that bends “ribs” and punches small holes into the part to keep leaves or debris from settling on top, while allowing the rainwater to pass through the holes and into the gutter.

They were needing to apply the oil to the rollers because they were starting to see some irregularities in hole size as well as some deformities to the shape of the ribs due to heat being generated during the forming process. The customer was interested in using some type of atomizing spray nozzle in the hopes that providing an atomized mist of liquid may provide for a faster evaporation of the oil so there wasn’t much residue left on the part before packaging.

After further discussing the details, they advised that they were going to have the oil in a container about 12″ below the machine but didn’t have a way to pressurize or pump the liquid to the nozzle. Once again, EXAIR has the perfect solution with our 1/4 NPT Siphon Fed Atomizing Nozzles. These nozzles are the ideal solution where pressurized liquid isn’t available as they use the compressed air to the draw the liquid into the nozzle, up to 36″ of suction height, and mix it internally to produce a mist of atomized liquid spray. For this particular application, the Model # SR1010SS was a good solution as it provides a low flow rate of only 0.8 GPH and a tight spray pattern to focus right at the rollers to avoid any waste or overspray.

sr1010ss
Model # SR1010SS Siphon Fed Round Pattern Atomizing Spray Nozzle – 303ss construction, fully adjustable flow rate

EXAIR offers an extensive range of Atomizing Nozzles that can be used for light coating applications, like above, or for wider coverage areas or higher flow rates. For help selecting the best option to fit your needs, contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Tiny Engineered Nozzle Saves 91 SCFM for Engine Block Blow-Off

Drilled pipe
Air Box with homemade nozzles

Above, you see a photo of what our customer calls an “air box”. It is aptly named as it consists of approximately 65 homemade nozzles, connected to a large plenum, which are able to be aimed in a variety of directions to blow out the numerous holes that are machined into the bottom of an aluminum engine block.

The engine (1024x621)
Engine Block with multiple holes to be blown out

Each of the nozzles above were hand-made for the air box fixture with an internal hole diameter of 1.6 mm. and which produced a force of about 50 grams with 6 BARG inlet pressure. The goal of reviewing the application was to see what if any EXAIR nozzles could replace these custom-made units to produce an air savings and thus cost savings for operating their fixture.

1108ss_profile
Model 1108SS Super Air Nozzle

After determining that the existing nozzles consumed 4.1 SCFM @ 6 BARG inlet pressure, I was able to make a comparison to the Super Air Nozzles that make up the smaller end of our flow range. In comparing these nozzles, I was able to determine that the Atto Super Air Nozzle, model 1108SS consumes 2.69 SCFM @ 6 BARG and produces 61 grams of force per nozzle.

The calculated air savings between the existing nozzle and the EXAIR Super Air Nozzle was about 34%. That’s a savings of 1.4 SCFM per nozzle. In terms of sheer air volume, that’s not a lot, BUT when you multiply that up over 65 nozzles, total air savings is 91 SCFM. That is close to saving the full output of a 25 HP air compressor!

And so, if you run out the cost to operate a 25 HP air compressor for a year’s worth of production, the savings becomes quite clear that by simply swapping out these homemade nozzles for an engineered solution with EXAIR Super Air Nozzles, the customer can achieve their goal for reduction in air use. Not to mention a significant reduction in the noise level for the application as well as enhanced safety with OSHA compliant nozzles.

Do you have a blowing application that could benefit from the same kind of simple, swapping of nozzles to bring your production costs down? Give us a call and let us know about your application. We would be happy to discuss with you and provide a similar comparison to determine how much air you could save!

Neal Raker, International Sales Manager
nealraker@exair.com
@EXAIR_NR