Minimize Exposure to Hazards Using the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

HierarchyControls
CDC Hierarchy of Controls

The least effective methods are Administrative Controls and PPE. Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE (Personal Protective Equipment) is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process to the hazardous task is no longer performed.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or reduce the hazards of compressed air usage.

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and pressure safe engineered air products such as Air Nozzles, Air Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Nozzles

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace.

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Safety Air Guns – Using Engineered Air Nozzles For High Performance

Inexpensive air guns can be picked up just about anywhere, and you generally get what you pay for. Most will be very noisy and waste lots of compressed air.  And many will be unsafe, violating two of OSHA’s standards put in place to protect worker safety. The first is Standard 29 CFR 1910.95(a) which sets limits to the maximum noise exposure, and the second is Standard 29 CFR 1910.242(b) which says that the nozzle cannot be dead-ended, or exceed a 30 PSIG pressure limit.

These guns may seem like a perfect fit for a handheld blowoff application. The truth is, the cost saved up front will easily be paid throughout the cost of ownership.  This is due to the lack of an engineered nozzle which meets and exceeds the OSHA standards mentioned above.   The “cheap” guns often have a cross drilled hole to meet or exceed the OSHA standard for dead-end pressure. While this may be true, it causes a large wind sheer which escalates noise levels to well over the allowable noise level exposure set by OSHA.  These tips sometimes offer large force outputs because they are equivalent to an open pipe.  We have publicized numerous times about how an open pipe blow off does not permit pressure to be utilized all the way to the point of blowoff, and is also a waste of energy.

In order to determine how much compressed air your current blow guns utilize, the level of noise they product, and the sound level they produce, consider taking advantage of the EXAIR Efficiency Lab.  The Efficiency Lab is a free service that you can read more about here.

An EXAIR Safety Air Gun is engineered and designed to comply both of the OSHA standards mentioned above, ensuring safe operation for company personnel.  On top of the safety designed into the guns, we also ensure all of our guns are efficient by offering only engineered nozzles on them.

EXAIR offers (4) types of Safety Air Guns – the VariBlast, the Soft Grip, the Heavy Duty, and the Super Blast.  Each type of Safety Air Gun is offered with a plethora of nozzles, as well as varying length extensions, with or without the Chip Shield.

Safety Air Guns
The VariBlast, Soft Grip and Heavy Duty Style of Pistol Grip Safety Air Guns
Super Blast
The Super Blast Style of Safety Air Gun

 

We invite you to try out an EXAIR Safety Air Gun, and get the free 1″ Wide Flat Super Air Nozzle as a bonus. Click here for more details about this special promotional offer.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

OSHA At 35,000 Feet

Early one morning I was on a flight to the West coast to start up a system that I had designed and built for a large food producer.  After the flight attendants had passed out our first beverage and snack I struck up a conversation with the passenger next to me.  We engaged in the typical banter about how hilarious it is to watch some passengers try to stuff an oversized bag into the overhead compartment and ultimately have to check it.

I then asked the reason for her trip and she explained that she worked for OSHA and had conducted a study on flight crew safety and was in route to give her report on the findings.  I was naturally intrigued and asked her what the risks were for a flight crew other than the obvious perils of being 35,000 Ft. above the ground for long periods of time.

Her reply was radiation exposure from the sun!  I had never considered that flight crews spend long periods of time above the thickest layer of our atmosphere.  Flight crews are exposed to significantly greater amounts of radiation compared to us folks who are on the ground more and consequently develop certain health conditions at a higher rate than the general population.

While EXAIR can’t help you with radiation exposure, we can bring you into OSHA compliance with noise, OSHA Standard 29 CFR – 1910.95 (a).

This standard is concerned with the level of noise that personnel are exposed to over a given period of time.  Often times in plants compressed air noise exceeds the OSHA noise level requirements which unfortunately results in hearing loss.  Noisy air blow-offs can produce noise in excess of 100 dBA.  Studies have proven that noise levels that are sustained for varying periods of time can ultimately result in permanent hearing loss.  Similar to the way flight crews are exposed to the radiation, some employess may not realize they are being exposed to a harmful level of noise from compressed air usage.  This is why OSHA generated the standard that has allowable limits for sustained noise levels in order to mitigate the risks for personnel in the area.  Utilizing EXAIR Super Air Nozzles the noise can be reduced to only 74 dBA.  EXAIR Engineered Air Nozzles reduce the noise without losing the hard hitting force.

dBA Chart

EXAIR also meets OSHA Standard 29 CFR 1910.242(b) for “Dead End Pressure”. This standard addresses how dangerous compressed air can be when the outlet pressure of a hole, hose or open pipe is higher than 30 PSIG (2 Bar).  If the opening is blocked (dead-ended) into any part of the body, air could enter the bloodstream through the skin.  This may result in serious injury.  All EXAIR Nozzles and Jets are designed for safety and can’t be dead-ended into the skin therefore can be safely operated above the 30 PSIG (2 Bar) limit.

sag-osha-compliant

If you would like to discuss noise levels, dead end pressure or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Small, Precise Blowoff at Your Fingertips

For many blowoff applications, stronger isn’t necessarily better.  For applications and processes where a light, but effective blast of air is needed for cleaning and drying, the VariBlast Compact Safety Air Gun with the Atto, Pico, or Nano nozzle fits the bill. The smallest of the EXAIR engineered Super Air Nozzle family, the Atto, Pico, and Nano have been designed to provide the smallest, most precise blowoff possible. The focused airflow pattern allows for very accurate control and placement of the air stream.  The nozzles are available in both Type 316 Stainless Steel and PEEK plastic (useful for harsh environments, and is non-marring)

img_7480.jpg
The Atto, Pico, and Nano Super Air Nozzles (Scale is in Inches)

The new VariBlast Compact Safety Air Gun is a great choice for putting the power and performance of the nozzle into a small and lightweight air gun. Designed with a variable flow trigger, the airflow can be throttled from a whisper to full force, simply by varying the trigger pull distance.

1698SS
VariBlast Model 1698SS, with Stainless Steel Nano Super Air Nozzle

The Atto, Pico, and Nano nozzles use very little compressed air and are extremely quiet, easily meeting OSHA Standard 29 CFR 1910.95(a) for Noise Exposure.  The design incorporates engineered solutions for safety and can be supplied with higher pressure compressed air and meet OSHA Standard 29 CFR 1910.242(b), relating to dead end pressure requirements.

The table below provides performance data, including the compressed air consumption, force, and sound level for the various configurations.

VariBlast With Small Nozzles

Note that the VariBlast air guns can be had with extensions from 6″ to 72″ and chip shields to meet the performance and safety needs of any application.

The Atto, Pico and Nano Nozzles can also be configured to work with the Soft Grip style of Safety Air Gun.  Consult an Application Engineer for assistance in choosing.

If you have any questions about the Atto, Pico, or Nano nozzles, the VariBlast Compact Safety Air Gun, or any EXAIR compressed air product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Engineered Air Nozzles Reduce Noise Levels and Outlet Pressure, Meeting OSHA Requirements

“My operators are complaining that our air guns are too loud, how can you help me?” – is a very common inquiry we receive here at EXAIR on almost a daily basis. Many open end blowoffs or air guns fitted with nozzles that have cross drilled relief holes create high pitch wind shear, resulting in excessive noise levels, sometimes exceeding 100+ dBA. This not only is a safety concern but also an OSHA violation.

Variety of Air Nozzles that produce dangerously loud noise levels

Loud noises and the length of exposure time can lead to significant health concerns such as long term hearing loss, increased stress levels and potential injury due to lack of concentration. The Occupation Safety and Health Administration (OSHA) introduced Standard 29 CFR 1910.95(a) as a way to protect workers from job related injuries associated to potentially dangerous sound levels. Per the Standard, at 90 dBA an operator is limited to a maximum of 8 hours of constant exposure. As noise levels increase, the allowable exposure time decreases, in some cases slowing production, costing a company on their bottom line.

 

EXAIR’s Air Nozzles are engineered so they entrain surrounding air across the profile of the nozzle, which produces a smoother airflow, ultimately reducing wind shear, resulting in much lower sound levels, meeting the OSHA Standard.

Illustration showing the air travel of our Super Air Nozzles

 

In addition, our Air Nozzles also meet the OSHA Standard 1910.242(b) for 30 PSI dead end pressure. All of our engineered Air Nozzles provide a relief or a safe path for the air to exit if the nozzle were to be blocked or pressed against an operator’s body so the exiting air pressure will never reach 30 PSIG.

All of EXAIR’s Air Nozzles are available with standard NPT threads to easily adapt to existing air guns. We also off our full line of Safety Air Guns which are fitted with our engineered nozzles, providing an “off-the-shelf” OSHA compliant solution. For help selecting the best product to replace your existing device or if you have a new application you would like to discuss, give us a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinicholl@exair.com
@EXAIR_JN

 

EXAIR Leads the Way with Product Standards

Standards seem to continually get introduced and updated. There is an ever increasing number of local, regional, federal, and even global standards to comply with.  We pay close attention to these standards and have the largest number of standards upon our products.

meets or exceeds oshaThe standards the every EXAIR product meets or exceeds are the OSHA standards for dead-end pressure as well as allowable noise level exposure.  The dead-end pressure directive is OSHA standard 29 CFR 1910.242 (b).  The standard refers to the fact that compressed air can be dangerous when the outlet pressure of a hole, hose or copper tube is higher than 30 psig (2 BAR).  In the event the opening is blocked by a hand or other body part, air may enter the bloodstream through the skin, resulting in a serious injury.  All of the compressed air products manufactured by EXAIR have been designed for safety.  All are safe to be supplied with higher pressure than 30 psig and still meet or exceed the OSHA standard.

The OSHA standard 29 CFR – 191.95 (a) refers to the maximum allowable noise exposure that an operator is permitted to be exposed to for a given period of time.   The chart of allowable exposure times is shown below.   All EXAIR products are engineered to create the minimum amount of noise while efficiently utilizing compressed air.   Many times blow offs are cross drilled to permit air to escape in order to meet the OSHA standard for dead end pressure, this process increases the noise level generated by that blow off considerably.

OSHA Noise Level

One of the most stringent compliance that EXAIR has upon its products is the UL/CUL listings and recognition.  All EXAIR Cabinet Cooler Systems are UL listed, we were the first to insure your electrical cabinet’s NEMA integrity remained by putting our Cabinet Cooler systems to the UL test. This means that the Underwriters Laboratories have deemed these products safe for operation throughout the US and Canada per their standards that are applicable for each of the product groups.   The products undergo numerous tests and scenarios to ensure that an operator will be safe during the normal operation of the units.   The tests for the Cabinet Cooler Systems includes environmental exposure for the given NEMA type of the enclosure along with many other tests.  The Static Eliminator Power Supplies are also UL listed.

cULlistedcULrecognized

CE is another standard which EXAIR pays great attention to to meet or exceed. CE is a standard that is normally preferred when dealing with countries outside of the US but is gaining popularity within the states as well.  CE being a European standard actually stands for a french phrase, “Confrmité Eurpéene” which is translated to “European Conformity”.  Any EXAIR product displaying the CE mark conforms where there are applicable directives.CE

The RoHS directive is targeted on heavy metals that are generally found within electronics.  Substances like Mercury, Lead, Polybrominated biphenyls, Cadmium, or Hexavalent chromium.  In order to meet the RoHs directive a product must have 100 parts per million or less of mercury and for other substances there must be less than 0.01% of the substance by weight in a raw homogeneous materials level. All EXAIR products which are electronic or contain electronic devices are compliant to the 2002/95/EC RoHS directive, also including the amendment outlined in the European Commission decision L 214/65.  This includes all EXAIR Static Eliminators, Electronic Flow Control, and Electronic Temperature Control products.ROHS_Vector

EXAIR maintains records to be sure our supply chain is providing product which meets the conflict mineral free guidelines of the Dodd-Frank Act.  EXAIR supports Section 1502 of the Dodd-Frank Wall Street Reform and Consumer Protection Act and we are committed to compliance with the conflict minerals rule in order to curb the illicit trade of tin, tantalum, tungsten and gold in the DRC region. EXAIR is using the CMRT 3.02 template to document our supply chain and commitment to conflict free products. When requested we will even provide the needed forms to support our customer’s efforts in complying with the Dodd-Frank Act.

conflictfree

REACH, is another European Community Regulation this time on chemicals and their safe use.  REACH is targeted to ensure personnel and environmental health by identifying the intrinsic properties of chemical substances easily.  REACH stands for Registration, Evaluation, Authorization and Restriction of Chemical substances and was written into law in 2007. EXAIR products are not required to be registered per Title II, Article 7, paragraph 1  of the legislation since they do not contain substances that are intentionally released.   This is to ensure compliance with Regulation (EC) No 1907/2006 Title I, Article 3, paragraph 3, the European Union requires registration of chemicals and substances imported into the EU to ensure a high level of protection of human health and environment.

Reach

 

To conclude, when there is a safety audit, safe sourcing directive or some other form of standard/conformance that you need to meet, consider EXAIR compressed air products. Please contact us to find out if we can help you meet or exceed those standards.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Safety – When You Least Expect It You Need it Most

The cold weather kept me indoors this weekend and I conceded to being a couch potato in front of the TV. One of the shows I watched was the lumberjack competitions – and let me tell you, those guys are crazy. Standing on a board wedged into a notch in the side of a tree, up 40 feet in the air and swinging an ax is just not safe. But, that was the way it was done in the early days before mandated safety rules.

Afterward, I watched a little news only to see hundreds of motorists stranded in their cars due to inclement weather. Folks were on their way home from work and ended up sleeping in their cars. I know it is recommended that you carry an emergency kit in your car but I never gave it any thought it would be needed it in the city. Then I was jolted from my couch when the smoke alarms went off. I forgot about my buffalo wings in the oven. Wow! What if I had left the house?

In the workplace, compressed air safety should be a top priority. Open compressed air lines are extremely noisy and can cause permanent hearing loss which is addressed  OSHA Standard 29 CFR – 1910.95 (a) regarding the allowable noise exposure. High pressure compressed air can pierce the skin and enter the blood stream, causing a dangerous blood embolism – this is why OSHA has standard CFR 1910.242(b), 30 PSI maximum dead end pressure for compressed air blow off.

One of the main issues with regulating all of your compressed air lines to less than thirty psig is, thirty psig does not provide a very effective blow off.  With EXAIR’s  engineered nozzles the air can be kept at higher line pressure and still meet or exceed the OSHA standard. Higher pressure equate to higher velocity and more force upon your application. Because of this, we can solve the application, keep compressed air to a minimum, and keep safety a top priority.

Air Nozzle and Safety Air Gun

EXAIR nozzles are safe, provide very effective blow off, and reduce compressed air consumption. By design they produce output flow up to 25 times the compressed air consumed. For more information or help with your application call our application engineers at 1-800-903-9247

Joe Panfalone
Application Engineer
Phone (513) 671-3322
Fax (513) 671-3363
Web: www.exair.com
Twitter: www.twitter.com/exair_jp
Facebook: http://www.facebook.com/exair