EXAIR and the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

NIOSH_Hierarchy_of_Controls
Hierarchy of Controls

 

The least effective methods are Administrative Controls and Personal Protective Equipment (PPE). Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process so the hazard is no longer part of the process.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or substitute the hazards of compressed air use with relative ease. 

Home of Intelligent Compressed Air Products

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and intelligent compressed air products such as Air NozzlesAir Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace. EXAIR products can be easily substituted for existing, unsafe compressed air products in many cases. And to avoid the hazard altogether, remember EXAIR when designing products  or processes which require compressed air use for cooling, cleaning, ejection, and more. 

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Hierarchy of Controls Image:  used from  Public Domain

Minimize Exposure to Hazards Using the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

HierarchyControls
CDC Hierarchy of Controls

The least effective methods are Administrative Controls and PPE. Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE (Personal Protective Equipment) is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process to the hazardous task is no longer performed.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or reduce the hazards of compressed air usage.

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and pressure safe engineered air products such as Air Nozzles, Air Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Nozzles

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace.

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Safety Air Guns – Using Engineered Air Nozzles For High Performance

Inexpensive air guns can be picked up just about anywhere, and you generally get what you pay for. Most will be very noisy and waste lots of compressed air.  And many will be unsafe, violating two of OSHA’s standards put in place to protect worker safety. The first is Standard 29 CFR 1910.95(a) which sets limits to the maximum noise exposure, and the second is Standard 29 CFR 1910.242(b) which says that the nozzle cannot be dead-ended, or exceed a 30 PSIG pressure limit.

These guns may seem like a perfect fit for a handheld blowoff application. The truth is, the cost saved up front will easily be paid throughout the cost of ownership.  This is due to the lack of an engineered nozzle which meets and exceeds the OSHA standards mentioned above.   The “cheap” guns often have a cross drilled hole to meet or exceed the OSHA standard for dead-end pressure. While this may be true, it causes a large wind sheer which escalates noise levels to well over the allowable noise level exposure set by OSHA.  These tips sometimes offer large force outputs because they are equivalent to an open pipe.  We have publicized numerous times about how an open pipe blow off does not permit pressure to be utilized all the way to the point of blowoff, and is also a waste of energy.

In order to determine how much compressed air your current blow guns utilize, the level of noise they product, and the sound level they produce, consider taking advantage of the EXAIR Efficiency Lab.  The Efficiency Lab is a free service that you can read more about here.

An EXAIR Safety Air Gun is engineered and designed to comply both of the OSHA standards mentioned above, ensuring safe operation for company personnel.  On top of the safety designed into the guns, we also ensure all of our guns are efficient by offering only engineered nozzles on them.

EXAIR offers (4) types of Safety Air Guns – the VariBlast, the Soft Grip, the Heavy Duty, and the Super Blast.  Each type of Safety Air Gun is offered with a plethora of nozzles, as well as varying length extensions, with or without the Chip Shield.

Safety Air Guns
The VariBlast, Soft Grip and Heavy Duty Style of Pistol Grip Safety Air Guns

Super Blast
The Super Blast Style of Safety Air Gun

 

We invite you to try out an EXAIR Safety Air Gun, and get the free 1″ Wide Flat Super Air Nozzle as a bonus. Click here for more details about this special promotional offer.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

OSHA At 35,000 Feet

Early one morning I was on a flight to the West coast to start up a system that I had designed and built for a large food producer.  After the flight attendants had passed out our first beverage and snack I struck up a conversation with the passenger next to me.  We engaged in the typical banter about how hilarious it is to watch some passengers try to stuff an oversized bag into the overhead compartment and ultimately have to check it.

I then asked the reason for her trip and she explained that she worked for OSHA and had conducted a study on flight crew safety and was in route to give her report on the findings.  I was naturally intrigued and asked her what the risks were for a flight crew other than the obvious perils of being 35,000 Ft. above the ground for long periods of time.

Her reply was radiation exposure from the sun!  I had never considered that flight crews spend long periods of time above the thickest layer of our atmosphere.  Flight crews are exposed to significantly greater amounts of radiation compared to us folks who are on the ground more and consequently develop certain health conditions at a higher rate than the general population.

While EXAIR can’t help you with radiation exposure, we can bring you into OSHA compliance with noise, OSHA Standard 29 CFR – 1910.95 (a).

This standard is concerned with the level of noise that personnel are exposed to over a given period of time.  Often times in plants compressed air noise exceeds the OSHA noise level requirements which unfortunately results in hearing loss.  Noisy air blow-offs can produce noise in excess of 100 dBA.  Studies have proven that noise levels that are sustained for varying periods of time can ultimately result in permanent hearing loss.  Similar to the way flight crews are exposed to the radiation, some employess may not realize they are being exposed to a harmful level of noise from compressed air usage.  This is why OSHA generated the standard that has allowable limits for sustained noise levels in order to mitigate the risks for personnel in the area.  Utilizing EXAIR Super Air Nozzles the noise can be reduced to only 74 dBA.  EXAIR Engineered Air Nozzles reduce the noise without losing the hard hitting force.

dBA Chart

EXAIR also meets OSHA Standard 29 CFR 1910.242(b) for “Dead End Pressure”. This standard addresses how dangerous compressed air can be when the outlet pressure of a hole, hose or open pipe is higher than 30 PSIG (2 Bar).  If the opening is blocked (dead-ended) into any part of the body, air could enter the bloodstream through the skin.  This may result in serious injury.  All EXAIR Nozzles and Jets are designed for safety and can’t be dead-ended into the skin therefore can be safely operated above the 30 PSIG (2 Bar) limit.

sag-osha-compliant

If you would like to discuss noise levels, dead end pressure or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook