Air Nozzles and Air Jets: An Overview

One of the simplest solutions to lower your air consumption and noise level when it comes to compressed air is to switch your open tubes or pipes and liquid nozzles which are being used for air applications to an engineered compressed air nozzle. EXAIR’s Engineered Air Nozzles and Jets provide a simple solution for a wide variety blow off and compressed air applications and can solve a multitude of process problems efficiently. These applications can include simple blow offs, cooling, part ejection, and much more.

Super Air Nozzles:
Super Air Nozzles are one of the more versatile of all of EXAIR’s Engineered Air Nozzles. They come in many different sizes from a tiny size of M4 threads and 13 millimeters long to the largest with  1-1/4 NPT threads which has a 2″ hex and is almost 5″ long. These are usually used for standard blow off applications that replace open pipes to reduce your air consumption and noise. The force values vary from 2 ounces to 23 pounds of force. 

Another variation of the Super Air Nozzles is the Flat Super Air Nozzles; these nozzles create a small flat curtain of air at a high force to provide a wider blow off area for smaller NPT sized nozzles. The 1” and 2” Flat Super Air Nozzle also have replaceable shims that allow you to adjust the force coming out of the nozzle by increasing the amount of air that is used.   

EXAIR Air Nozzles

Back Blow Air Nozzles:
Back Blow Air Nozzles are designed in a way that blows that makes it easy to blow out the inside of pipes. The Back Blow Air Nozzles have holes around the outside diameter pointed back that creates a cone of air around the air inlet port. This makes it easy to dislodge clogs in pipes that you don’t want going back into the machine and for blowing out liquid and debris from the inside. They are also commonly used with EXAIR’s Chip Shield as to prevent any particles from flying back and hitting the user. Back Blow Air Nozzles come in three sizes: M4, ¼”, and 1” and can be used on inside diameters ranging from ¼” to 16”. 

EXAIR Back Blow Air Nozzles

Super Air Nozzle Clusters:
Super Air Nozzle Clusters use a number of the ¼” Super Air Nozzles to create one nozzle that has a wider cone and larger force. Clusters are usually used in wide area blow off but can also be used for part cooling and part reject as they do supply a wider area of force. Super Air Nozzle Clusters are sized by the number of nozzles in the cluster; the three sizes that we offer are 4-nozzle cluster (3/8” NPT inlet), 7-nozzle cluster (1/2” NPT inlet), and the 12-nozzle cluster (1” NPT inlet). 

EXAIR Super Air Nozzle Cluster

Air Jets:
Air Jets amplify the total volume of air into a high velocity stream of air. This makes it very useful for blowing off/drying applications and cooling applications due to the higher volume of air flowing through the unit. Air Jets come in two variations which are the High Velocity Air Jet and the Adjustable Air Jets. The High Velocity Air Jet uses a 0.015” shim that allows the air to escape the unit at a high velocity laminar flow to entrain the surrounding ambient air; this can be adjusted down using the shim kit which includes a 0.006” and 0.009” shims. The Adjustable Air Jet allows the user to easily adjust the air gap using the micrometer gap indicator. 

EXAIR Air Jets

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR and the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

NIOSH_Hierarchy_of_Controls
Hierarchy of Controls

 

The least effective methods are Administrative Controls and Personal Protective Equipment (PPE). Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process so the hazard is no longer part of the process.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or substitute the hazards of compressed air use with relative ease. 

Home of Intelligent Compressed Air Products

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and intelligent compressed air products such as Air NozzlesAir Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace. EXAIR products can be easily substituted for existing, unsafe compressed air products in many cases. And to avoid the hazard altogether, remember EXAIR when designing products  or processes which require compressed air use for cooling, cleaning, ejection, and more. 

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Hierarchy of Controls Image:  used from  Public Domain

Minimize Exposure to Hazards Using the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

HierarchyControls
CDC Hierarchy of Controls

The least effective methods are Administrative Controls and PPE. Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE (Personal Protective Equipment) is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process to the hazardous task is no longer performed.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or reduce the hazards of compressed air usage.

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and pressure safe engineered air products such as Air Nozzles, Air Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Nozzles

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace.

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB