How to Calculate ROI (Return on Investment)

You may have asked…why should I switch over to an engineered compressed air product if my system already works? Or…How can your products be much different?

Manufacturing has always been an advocate for cost savings, where they even have job positions solely focused on cost savings. Return on Investment (ROI) is a metric they look toward to help make good decisions for cost savings.  The term is used to determine the financial benefits associated with the use of more efficient products or processes compared to what you are currently using. This is like looking at your homes heating costs and then changing out to energy efficient windows and better insulation. The upfront cost might be high but the amount of money you will save over time is worth it.

ROI Calculation

How is ROI calculated? It is very simple to calculate out the potential savings of using an EXAIR Intelligent Compressed Air® Product. We have easy to use calculators on our websites Resources where filling in a few blanks will result in an ROI when switching to a EXAIR product! Here they Are, Calculators.

I’ll go ahead and break down the simple ROI calculations for replacing open blow offs with an EXAIR Super Air Nozzle:

  • ¼” Copper Pipe consumes 33 SCFM at 80 psig (denoted below as CP)
  • A Model 1100 ¼” Super Air Nozzle can be used to replace and only uses 14 SCFM at 80 psig (denoted below as EP)

Calculation:

(CP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for Copper Pipe  

(33) * (60) * (8) * (5) * (52) = 4,118,400 SCF

(EP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for EXAIR Product  

               (14) * (60) * (8) * (5) * (52) = 1,747,200 SCF

Air Savings:

SCF used per year for Copper Pipe – SCF used per year for EXAIR Product = SCF Savings

               4,118,400 SCF – 1,747,200 SCF = 2,371,200 SCF in savings

If you know the facilities cost to generate 1,000 SCF of compressed air you can calculate out how much this will save. If not, you can use $0.25 to generate 1,000 SCF which is the value used by the U.S. Department of Energy to estimate costs.

Yearly Savings:

                (SCF Saved) * (Cost / 1000 SCF) = Yearly Savings

                                (2,371,200 SCF) * ($0.25 / 1000 SCF) = $592.80 annual Savings

With the simple investment of $42 (as of date published) you can calculate out the time it will take to pay off the unit.

Time Until payoff:

                (Yearly Savings) / (5 days/week * 52 weeks/year) = Daily Savings

                                ($592.80/year) / (5 days/week * 52 weeks/year) = $2.28 per day

                (Cost of EXAIR Unit) / (Daily Savings) = Days until product has been paid off

                                ($42) / ($2.28/day) = 17.9 days  

As you can see it doesn’t have to take long for the nozzle to pay for itself, and then continue to contribute toward your bottom line. 

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Hand Holding money Image from Pictures of Money Creative Commons license

Benefits of Engineered Air Jets and Nozzles

EXAIR’s Engineered Air Nozzles and Air Jets provide a superior solution to minimize compressed air usage and reduce noise levels for compressed air blow-off operations.

Air Nozzles and Jets – when compared to commonly used open copper tubes or pipes the compressed air savings can be as high as 80%. With less compressed air, sound levels are greatly reduced.  A 10 dBA noise level reduction is typical.  All EXAIR Air Nozzles and Jets meet OSHA guidelines for dead end pressure and sound level exposure standards.
EXAIR Air Jets

EXAIR Nozzles and Jets are designed and manufactured to take advantage of the Coanda (wall attachment of a high velocity fluid) effect which can amplify the airflow up to 25 times. The compressed air exits through the small holes on the nozzle which entrains the surrounding air. The effect from this is a high volume, high velocity blast using less compressed air.  EXAIR manufactures many sizes and styles of air nozzles from the smallest, but quite powerful M4 x 0.5 thread Atto Super Air Nozzles to our largest 1-1/4 NPT Super Air Nozzle.  We also offer Flat Super Air Nozzles, and the Back Blow style nozzle for cleaning out tubes, pipes, channels or holes from 1/4″ to 16″ in diameter.

The Air Jets are 1/8 NPT threads and blow air out at a right angle from the inlet. They produce a vacuum on the larger diameter side which pulls in surrounding ambient air into the total output flow. Air Jets are available in brass or Type 303 stainless steel. You can choose from a fixed flow style or an adjustable flow style to provide flexibility for your applications. The adjustable flow models have a clear micrometer air gap indicator to assure consistent and accurate results.

All of our Air Nozzles and Jets  are engineered to meet or exceed OSHA Standard 1910.24(b) for 30 PSIG dead end pressure, they cannot be dead-ended as there is always a route for the air to escape. In addition, our products are going to meet the OSHA Standard CFR 29 – 1910.95(a) for allowable noise exposure levels.

EXAIR’s Flat Super Air Nozzles have been blowing away the competition since 2003.

EXAIR’s Swivel Fittings make it easy to adjust the position of the Air Nozzles and Air Jets.  The fittings allow for movement of 25° form the center axis for a total movement of 50°.  There are nine different models available and all of them are made from stainless steel

EXAIR Swivel fittings

If you would like to discuss blow off, noise levels, dead end pressure or any of EXAIR’s Intelligent Compressed Air® usage solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Two Important Safety Factors When Choosing Air Nozzles

At EXAIR, we have a statement, “Safety is everyone’s responsibility”.  And we also manufacture safe compressed air products.  In the United States, we have an organization called Occupational Safety and Health Administration, OSHA, that enforces directives for safe and healthy working environments.  They do training, outreach programs, and educational assistance for manufacturing plants.  They will also enforce these directives with heavy fines for violations.  The two most common violations with compressed air are air guns and blow-off devices are described in 29CFR 1910.242(b) for dead-end pressure/chip shielding and 29CFR 1910.65(a) for maximum allowable noise exposure.

Here is an example of a nozzle that is dangerous.  As you can see, there is only one opening where the air can come out from the nozzle.  Other types of nozzles that would fall into this same group would include copper tube, extensions, and open pipes.

Unsafe Nozzle

They are dangerous as the compressed air cannot escape if it is blocked with your body or skin.  If operated above 30 PSIG (2 bar), these nozzles could create an air embolism within the body which can cause bodily harm or death.  This is a hazard which can be avoided by using EXAIR Super Air Nozzles and Safety Air Guns.  The nozzles are designed with fins which allows the air to escape and not be blocked by your skin.  So, you can use the EXAIR Super Air Nozzles safely even above 30 PSIG (2 bar).

Unsafe Air Gun

To counteract the dead-end pressure violation, some nozzle manufacturers create a hole through the side of the nozzle (Reference photo above).  This will allow for the compressed air to escape, but, now the issue is noise level.  With an “open” hole in the nozzle, the compressed air is very turbulent and very loud.  The National Institute for Occupational Safety and Health, NIOSH, states that 70% to 80% of all hearing loss within a manufacturing plant is caused by compressed air.  OSHA created a chart to show the maximum allowable noise exposure.  This chart shows the time and noise limits before requiring hearing protection.  The EXAIR Super Air Nozzles, Super Air Knives, Super Air Amplifiers are designed to have laminar flow which is very quiet.  As an example, the model 1210 Safety Air Gun has a sound level of only 74 dBA; well under the noise exposure limit for 8 hours.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

NIOSH created an overview of how to handle hazards in the workplace.  They call it the Hierarchy of Controls to best protect workers from dangers.  The most effective way is by eliminating the hazard or substituting the hazard.  The least effective way is with Personal Protective Equipment, or PPE.  For unsafe compressed air nozzles and guns, the proper way to reduce this hazard is to substitute it with an engineered solution.

One of the last things that companies think about when purchasing compressed air products is safety.  Loud noises and dead-end pressure can be missed or forgotten.  To stop any future fines or additional personal protective equipment (PPE), it will be much cheaper to purchase an EXAIR product.  And with the Hazard Hierarchy of Controls, the first method is to remove any hazards.  The last method for control is to use PPE.  In the middle of the hierarchy is for an engineered solution.  EXAIR products are that engineered solution.  If you would like to improve the safety in your facility with your current blow-off devices, an Application Engineer can help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Picture:  Safety First by SuccoPixabay License

Video Blog: Laminar and Turbulent Flows

I have written blogs about laminar and turbulent flows as related to the Reynold’s number.  Now, let’s demonstrate the difference between the two flows and the advantages of laminar flow from EXAIR’s engineered air nozzles; as demonstrated by our VariBlast Safety Air Gun.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb