Process Improvement, ROI and Safety from One Air Nozzle

Process improvement projects can be detailed, complex, expensive, and take a long time to prove their worth.  Today, I want to tell you about one that WAS NOT ANYTHING like that.

A metal stamping company used compressed air to blow their products from their dies.  They did what many do – they ran some copper tubing, and aimed it at the platen so it would properly eject the parts as they were stamped.  They KNEW it was loud, and they suspected it was inefficient as well.

After discussing the setup and seeing a picture of it (the one on the left, below,) I recommended installing a few engineered Super Air Nozzles to lower the noise levels considerably.  Boy, was I wrong.  About “a few” nozzles, that is…turns out, they only needed one Model 1122-9212 2″ Flat Super Air Nozzle with 12″ Stay Set Hose.  The copper tubes come from a manifold that already had 1/4 NPT ports – installation took a matter of minutes.  Nothing detailed, complex, or expensive about it:

This loud & inefficient copper tubing blowoff was just a compression fitting (and a Model 1122 2″ Flat Super Air Nozzle) away from being quiet and efficient.

It didn’t take much longer than that to prove its worth either: as soon as they noticed how much the noise level went down on THIS press, they ordered them for the other eighteen presses in their facility as well.

The 1/4″ copper tubes blew continuously from a pressure regulator set @60psig…the three of them theoretically consumed a total of ~80 SCFM.  The Model 1122, at 60psig supply, consumes only 17.2 SCFM.  Simple return on investment was as follows:

  • 80 SCFM was costing them $48.00 a week
    • 80 SCFM X 60 min/hr X 8 hr/day X 5 days/week X $0.25/1,000 CFM = $48.00
  • 17.2 SCFM, using the same formula, only costs $10.32 a week (I’ll let you do the math; it’s good practice.)
  • They saved $37.68 a week.  The Model 1122-9212 costs $116.00 (2020 pricing) – that means that each of them paid for themselves in just a hair over three weeks.
  • $37.68 x 50 work weeks per year = $1884.00 saved annually per nozzle
  • $1884 x 18 (the number of presses) = $33,912 saved annually 

Considering they also didn’t have to listen to those very loud open ended copper tube blowoffs, I think you’ll have to agree it made for a very good investment.  They did. The new nozzle runs at 77 decibels, a comfortable level and well below the OSHA standard [29 CFR – 1910.95(a)] for allowable noise exposure.

If you’d like to find out how EXAIR Intelligent Compressed Air Products can save you money on compressed air – and save everyone’s hearing – give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

You Don’t Need to Spend Thousands to Optimize Your Compressed Air System

There is no denying it, saving compressed air is a process.  This process often involves some type of energy audit or at the very least an evaluation of something going wrong with production and a way to improve it.  Many programs, consultants, and sales reps will devise a solution for the problem.

Often times the solution is to create a more efficient supply side of the compressed air system. The supply side is essentially everything within the compressor room or located in close proximity to the actual air compressor. While optimizing the supply side can amount to savings, many of these solutions and services can involve great expense, or capital expenditure processes.  These processes can often lead to delays and continued waste until the solution is in place.  What if there was a way to lower compressed air usage, save energy, solve some demand issues on the compressed air system and save some money while the capital expenditure process goes through for the larger scale project.

These solutions are a simple call, chat, email or even fax away. Our Application Engineers are fully equipped to help determine what points of your compressed air demand side can be optimized. The process generally starts with our Six Steps To Compressed Air Optimization.

6 Steps from Catalog

Once the points of use are evaluated the Application Engineer can give an engineered solution to provide some relief to the strain on your compressed air supply side.  For instance, an open copper pipe blow off that is commonly seen within production environments can easily be replaced with a Super Air Nozzle on the end of a Stay Set Hose that will still bend and hold position like the copper pipe does while also saving compressed air, reducing noise level, and putting some capacity back into the supply side of the compressed air system.

engineered nozzle blow offs
Engineered solutions (like EXAIR Intelligent Compressed Air Products) are the efficient, quiet, and safe choice.

One of the key parts to the solutions that we offer here at EXAIR is they all ship same day on orders received by 3 PM ET that are shipping within the USA. To top that off the cost is generally hundreds, rather than thousands (or tens of thousands) of dollars. Well under any level of a capital expenditure and can generally come in as a maintenance purchase or purchased quickly through the supply cribs.  Then, to take this one step further, when the EXAIR solution shows up within days and gets installed EXAIR offers for you to send in the blow off that was replaced and receive a free report on what level of compressed air savings and performance increases you will be seeing and provide a simple ROI for that blow off (though we would also encourage a comparison before a purchase just so you have additional peace of mind).

This amounts to saving compressed air and understanding how much air is being saved, adding capacity back into your supply side which will reduce strain on the air compressor, give the ability to increase production while the capital expenditure for the end solution of controls and higher efficiency on the supply side is approved to then save even more compressed air and energy.

The point is this, savings and efficiency doesn’t have to involve a capital expenditure, if that is the end game for your project that is great! Let EXAIR provide you a solution that you can have in house by the next business day to save money NOW and then put that savings towards another project. No matter the method, it all starts with a call, chat, email or fax.

Brian Farno
Application Engineer


Does a 38 Day Simple ROI Sound Good? Use Engineered Compressed Air Blowoff Products!

After getting a baseline measurement of the air consumption in your facility and locating and fixing leaks in your system, it’s time to begin implementing some changes. Step 3 of the 6 Steps to Optimizing Your Compressed Air System covers upgrading your blowoff, cooling, and drying operations using engineered compressed air products.


This step can have the most impact when it comes to your bottom line. The energy costs associated with the generation of compressed air make it one of the most expensive utilities for any industrial environment. Because of this, we need to ensure that the places in your facility that are using compressed air are doing so efficiently.

EXAIR manufactures a variety of products that can help to ensure you’re using your compressed air in the best way possible. What it may seem simple, easy, and cheap to use something like an open-ended pipe or tube for blowoff, the fact of the matter is that the volume of air that these homemade solutions use quickly make them more expensive. Super Air Nozzles have been designed to entrain ambient air along with the supplied compressed air, allowing you to achieve a high force from the output of the nozzle while keeping compressed air usage to a minimum. In addition to saving air, they’ll also provide a significant reduction in overall sound level.

drilled pipe
homemade drilled pipe

Another product that can be used to increase the efficiency of your blowoff processes is the Super Air Knife. Available in lengths ranging from 3”-108” and in a variety of materials, the Super Air Knife is the ideal replacement for inefficient drilled pipes. Again, it may seem cheaper to just drill a few holes in a pipe whenever you need to cover a wide area but the volume of air consumed in addition to the incredibly high sound level will quickly drain your compressor. The Super Air Knife is also designed to entrain ambient air, at a rate of 40:1! Allowing you to take advantage of the free ambient air in addition to the supplied air.

Let’s compare the costs difference between a homemade drilled pipe and EXAIR’s Super Air Knife. The Super Air Knife has a precisely set air gap across the full length of the knife, allowing for an efficient and quiet laminar airstream. When compared to a drilled pipe, the air consumption is dramatically reduced as is the sound level. For example, let’s take an 18” section of drilled pipe, with 1/16” diameter holes spaced out every ½”. At 80 PSIG, each hole consumes 3.8 SCFM. With a total of 37 holes, this equates to a total of 140.6 SCFM.

3.8 SCFM x 37 = 140.6 SCFM

A Super Air Knife, operated at 80 PSIG with .002” stock shim installed will consume a total of 2.9 SCFM per inch of knife. An 18” SAK would then consume just 52.2 SCFM.

2.9 SCFM x 18 = 52.2 SCFM

140.6 SCFM – 52.2 SCFM = 88.4 SCFM saved 

Replacing an 18” drilled pipe with a Super Air Knife represents a total reduction in compressed air consumption of 63%! How much does this equate to in $$$? A reasonable average of cost to generate compressed air is about $0.25/ 1000 SCF. Let’s assume just a 40hr workweek:

88.4 SCFM x 60 mins x $0.25/1000 SCF = $1.33/hr

$1.33 x 40hr workweek = $53.20 USD

$53.20 x 52 weeks/year = $2,766.40 USD in yearly savings

The 2019 list price on a Model 110018 Super Air Knife is $397.00. By replacing the homemade solution with an 18” Super Air Knife, the return on investment is just over 38 working days of an 8-hr shift. If your plant runs multiple shifts, or works on weekends, it pays for itself even quicker.

Not only are these homemade solutions expensive to operate, they’re not safe either. Familiarize yourself with both OSHA 29 CFR 1910.95(a) and 29 CFR 1910.242(b) and you’ll learn just how expensive it can be if you were to be found using these devices during a random OSHA inspection. Make sure you’re utilizing the most expensive utility as efficiently and safely as possible. If you need help with determining which products are best suited for your application, give us a call. Our team of Application Engineers is ready to help!

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

EXAIR Air Nozzles – Here’s Their Simple ROI

Return on Investment, or ROI, is the ratio of profit over total investment.  Many people use it to check stocks, financial markets, capital equipment, etc.  It is a quantitative way in determining the validity for an investment or project.   You can use the ROI value to give a measurable rate in looking at your investment.

For a positive ROI value, the project will pay for itself in less than one year.  Any negative values would represent a high-risk investment.  In this blog, I will compare the ROI when replacing a ¼” NPT open pipe with a model 1122 2” Flat Super Air Nozzle.  Let’s start by looking at Equation 1 to calculate the Return on Investment:

Equation 1:  ROI = (Total annual savings – Total Project Cost) / Total Project Cost * 100

The second part of the equation, Total Project Cost, is the cost of the nozzles plus the labor to install them onto the machine.  The model 1122, 2” Flat Super Air Nozzle, has a price of $70.00 each.  The cost of a ¼” NPT Pipe that is roughly 2” long is around $1.50 each.  What a difference!  How could EXAIR been in business for over 35 years?  Let’s continue on with the Return on Investment…

The amount of time required to install the nozzles to the end of a pipe is 1/2 hour (generously).  The labor rate that I will use in this example is $75.00 per hour (you can change this to your current labor rate).  The labor cost to install a nozzle is $35.00.   The Total Project Cost can be calculated as follows: ($70 – $1.50) + $35.00 = $103.50.  The next part of the equation, Total annual savings, has more complexity in the calculation, as shown below.

As a reference, EXAIR Super Air Nozzles for compressed air would be considered like LED light bulbs for electricity.  The open pipes and tubes would represent the incandescent light bulbs.  The reason for this parity is because of the amount of energy that the EXAIR Super Air Nozzles can save.  While LED light bulbs are a bit more expensive than the incandescent light bulbs, the Return on Investment has a high percentage, or in other words, a short payback period.  On the other hand, the open pipe is less expensive to purchase, but the overall cost to use in your compressed air system is much much higher.  I will explain why.

To calculate the Total Annual Savings, we need to generate a blow-off scenario (You can use your actual values to calculate the ROI for your project).  In this example, I will compare the ¼” NPT open pipe to the 2” Flat Super Air Nozzle.  (The reason behind this comparison is that the model 1122 can screw directly onto the end of the 1/4” NPT pipe.)   The amount of compressed air used by a 1/4” NPT open pipe is around 140 SCFM (3,962 SLPM) at 80 PSIG (5.5 Bar).  The model 1122 has an air consumption of 21.8 SCFM (622 SLPM) at 80 PSIG (5.5 Bar).  At an electrical rate of $0.08 per Kilowatt-hour, we see that the cost to make compressed air is $0.25 per 1000 standard cubic feet, or $0.25/1000SCF.  (Based on 4 SCFM per horsepower of air compressor).

To calculate an annual savings, let’s use a blow-off operation of 8 hours/day for 250 days a year.   Replacing the ¼” NPT open pipe with a model 1122, it will save you (140 SCFM – 21.8 SCFM) = 118.2 SCFM of compressed air.  To put this into a monetary value, the annual savings will be 118.2 SCFM *$0.25/1000SCF * 60 Min/hr * 8hr/day * 250 day/yr = $3,546/year.  Now if you have more than one blow-off spot in your facility like this, imagine the total amount of money that you would save.

With the Total Annual Cost and the Project Cost known, we can insert these values into Equation 1 to calculate the ROI:

ROI = (Total annual savings – Total Project Cost) / Project Cost * 100

ROI = ($3,546 – $103.50) / $103.50 * 100

ROI = 3326%

With a percentage value that high, we are looking at a payback period of only 9 days.  You may look at the initial cost and be discouraged.  But in a little over a week, the model 1122 will have paid for itself.  And after using it for just 1 year, it will save your company $3,546.00.  Like with any great idea, the LED light bulb clicked on in my mind.  What could be the total savings if you looked at all the blow-off applications in your facility?

EXAIR Nozzles

In my experience, a loud blowing noise from your equipment is generally coming from an open pipe or tube.  With these “cheap” ways to blow compressed air, it will cost your company a lot of money to use as shown in the example above.  If you would like to team up with EXAIR to set up ways to increase savings, improve productivity, and increase safety, you can contact an Application Engineer to get started.  It can be as simple as screwing on a Super Air Nozzle.

John Ball
Application Engineer
Twitter: @EXAIR_jb