EXAIR Safety Air Gun Promotion

From August 1st to September 30th, 2018, EXAIR will be giving away a 1” Flat Super Air Nozzle with the purchase of any promotional VariBlast, Soft Grip, or Heavy Duty Safety Air Gun.  EXAIR is stressing the importance of safety in the workplace with the EXAIR Safety Air Guns as well as the versatility of the different types of EXAIR Super Air Nozzles.

SAGpromoAD_500xsq

This promotional item, the model 1126 1″ Flat Super Air Nozzle, has a patented shim to blow a 1” wide stream of air to clean surfaces quickly and efficiently and is a $45.00 USD value. For more details on the Promotion, click on the photo/link above. For more information about the Flat Super Air Nozzles, click HERE.

Inexpensive air guns can be purchased just about anywhere- online, via catalogs, and through industrial supply companies. Typical quality is less than ideal – broken triggers, leaky valves – a short lifespan in an industrial setting are merely a few of the issues observed.  Most are loud and inefficient – they just blow large amounts of compressed air, and at noise levels that violate OSHA requirements.  Some may even generate dangerous dead end pressure situations that that can result in serious or fatal injuries if blocked.

EXAIR’s Safety Air Guns have been engineered and designed to eliminate these issues. They are durable for use in industrial situations and comfortable to use for extended periods of time.  With an EXAIR engineered air nozzle, each model provides top performance by entraining large volumes of surrounding air into the air-stream. Operation is assured to be safe along with low compressed air consumption and noise levels.  Due to the design, the airflow that exits the nozzle cannot be blocked, as required by OSHA Standard 29 CPR 1910.242(b).

Safety Air Guns
The EXAIR VariBlast, Soft Grip and Heavy Duty Safety Air Guns

The VariBlast style of safety air gun offers variable force based on the range of trigger pull. Force can be varies, form a light breeze, to full force maximum output. This cast aluminum air gun can be fitted with any of the EXAIR 1/8 NPT engineered air nozzles.

The Soft Grip style of safety air gun  has a durable cats aluminum body suited for rugged, industrial use. The ergonomic design has a soft vinyl cover, a large trigger for easy operation, and a hanger hook for easy storage.

The Heavy Duty style of safety air gun is powerful with a durable aluminum cast body and ergonomic composite rubber grip, best suited for rugged industrial environments. Hours of fatigue free operation are possible.

With all of the Safety Air Guns styles, Chip Shields and Extension Pipes are available, from 6″ to 72″ in length.

1210-6cs
Soft Grip Safety Air Gun, with Chip Shield and 12″ Extension

With many nozzle options, from a whisper quiet 58 dBA and 2.5 SCFM of flow up to 60 SCFM and 87 dBA (still below the OSHA 8 hour noise level threshold) there is a model that will fit practically any application. Application Engineers are available by phone, email, and chat to review your specific blow off needs, and help to select the best possible solution available.

We invite to you to try out an EXAIR Safety Air Gun, and get the free 1″ Wide Flat Super Air Nozzle as a bonus.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Small, Precise Blowoff at Your Fingertips

For many blowoff applications, stronger isn’t necessarily better.  For applications and processes where a light, but effective blast of air is needed for cleaning and drying, the VariBlast Compact Safety Air Gun with the Atto, Pico, or Nano nozzle fits the bill. The smallest of the EXAIR engineered Super Air Nozzle family, the Atto, Pico, and Nano have been designed to provide the smallest, most precise blowoff possible. The focused airflow pattern allows for very accurate control and placement of the air stream.  The nozzles are available in both Type 316 Stainless Steel and PEEK plastic (useful for harsh environments, and is non-marring)

img_7480.jpg
The Atto, Pico, and Nano Super Air Nozzles (Scale is in Inches)

The new VariBlast Compact Safety Air Gun is a great choice for putting the power and performance of the nozzle into a small and lightweight air gun. Designed with a variable flow trigger, the airflow can be throttled from a whisper to full force, simply by varying the trigger pull distance.

1698SS
VariBlast Model 1698SS, with Stainless Steel Nano Super Air Nozzle

The Atto, Pico, and Nano nozzles use very little compressed air and are extremely quiet, easily meeting OSHA Standard 29 CFR 1910.95(a) for Noise Exposure.  The design incorporates engineered solutions for safety and can be supplied with higher pressure compressed air and meet OSHA Standard 29 CFR 1910.242(b), relating to dead end pressure requirements.

The table below provides performance data, including the compressed air consumption, force, and sound level for the various configurations.

VariBlast With Small Nozzles

Note that the VariBlast air guns can be had with extensions from 6″ to 72″ and chip shields to meet the performance and safety needs of any application.

The Atto, Pico and Nano Nozzles can also be configured to work with the Soft Grip style of Safety Air Gun.  Consult an Application Engineer for assistance in choosing.

If you have any questions about the Atto, Pico, or Nano nozzles, the VariBlast Compact Safety Air Gun, or any EXAIR compressed air product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

The Decibel

The decibel is a unit of measurement that relates the ratio of a physical value to another value and is expressed on a logarithmic scale.  The common symbol for decibel is dB.  The decibel is used as a measure for many parameters in science and engineering such as acoustics (sound), electronics (power levels) and control theory.

The decibel originates from methods used to express performance and loss in telegraph and telephone circuits.  The term ‘bel’ was coined in honor of Alexander Graham Bell, and the decibel, being 1/10th of a bel was established.

For most of us, the decibel is the familiar term relating to how loud a sound is.

With sound, the sound pressure is typically what is measured and is the local pressure deviation from the base or equilibrium atmospheric pressure, caused by a sound wave. In air, the sound pressure can be measured by a standard microphone, and is measured in pascals (Pa.)

To get to the common decibel reading we are familiar with, a little mathematics comes into play.

Capture

  • where Lp is the Sound Level in dB, prms is the measured sound pressure, and pref is the standard sound reference pressure of 20 micropascals.
  • The prms is what is measured by a microphone

Below are some representative sounds and the decibel rating – Note that sounds that are above 85 dB can cause hearing issues, and proper protection should be taken.Decibel Scale Still Photo

Some other interesting blogs about sound for you take a look at-

Measuring and Adding Sounds

Sound Power Level and Sound Pressure

Super Air Knife Math – When 72  + 72 = 75

If you would like to talk about sound or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Sound Power Level and Sound Pressure

Energy…all day (and night) long, we humans are surrounded by – and bombarded by – all kinds of energy. Sometimes, the effects are pleasant; even beneficial: the warmth of the sun’s rays (solar energy) on a nice spring day is the sure-fire cure for Seasonal Affective Disorder, and is also the catalyst your body needs to produce vitamin D. Good things, both. And great reasons to get outside a little more often.

Sometimes, the effects aren’t so pleasant, and they can even be harmful. Lengthy, unprotected exposure to that same wonderful sun’s rays will give you a nasty sunburn. Which can lead to skin cancer. Not good things, either. And great reasons to regularly apply sunblock, and/or limit exposure if you can.

Sound is another constant source of energy that we’re exposed to, and one we can’t simply escape by going inside. Especially if “inside” is a factory, machine shop, or a concert arena. This brings me to the first point of today’s blog: sound power.

Strictly speaking, power is energy per unit time, and can be applied to energy generation (like how much HP an engine generates as it runs) or energy consumption (like how much HP a motor uses as it turns its shaft) For discussions of sound, though, sound power level is applied to the generation end. This is what we mean when we talk about how much sound is made by a punch press, a machine tool, or a rock band’s sound system.

Sound pressure, in contrast, is a measure of the sound power’s intensity at the target’s (e.g., your ear’s) distance from the source. The farther away you get from the sound’s generation, the lower the sound pressure will be. But the sound power didn’t change.

Just like the power made by an engine and used by a motor are both defined in the same units – usually horsepower or watts – sound power level (e.g. generation) and sound pressure (e.g. “use” by your ears) use the same unit of measure: the decibel.  The big difference, though, is that while power levels of machinery in motion are linear in scale, sound power level and pressure scales are logarithmic.  And that’s where the math can get kind of challenging.  But if you’re up for it, let’s look at how you calculate sound power level:

Sound Power Level Equation

Where:

Wis reference power (in Watts,) normally considered to be 10-12 W, which is the lowest sound perceptible to the human ear under ideal conditions, and

W is the published sound power of the device (in Watts.)

That’s going to give you the sound power level, in decibels, being generated by the sound source.  To calculate the sound pressure level:

Sound Power Level to Sound Pressure Equation

Where:

Lis the sound power level…see above, and

A is the surface area at a given distance.  If the sound is emitted equally in all directions, we can use the formula for hemispheric area, 2πrwhere r=distance from source to calculate the area.

These formulas ignore any effects from the acoustic qualities of the space in which the sound is occurring.  Many factors will affect this, such as how much sound energy the walls and ceiling will absorb or reflect.  This is determined by the material(s) of construction, the height of the ceiling, etc.

These formulas may help you get a “big picture” idea of the sound levels you might expect in applications where the input data is available.  Aside from that, they certainly put into perspective the importance of hearing protection when an analysis reveals higher levels.  OSHA puts the following limits on personnel exposure to certain noise levels:

Working in areas that exceed these levels will require hearing protection.

EXAIR’s line of Intelligent Compressed Air Products are engineered, designed, and manufactured with efficiency, safety, and noise reduction in mind.  If you’d like to talk about how we can help protect you and your folks’ hearing, call us.

 

Digital Sound Level Meter Identifies Harmful Noise in the Workplace

slm-newlabel EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

 

To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The Digital Sound Meter can be used to monitor and measure sound levels of manufacturing processed such as blowoffs for cooling or drying.  Many blowoffs, especially open or drilled pipes are very inefficient and can be identified as a source of excessive noise, outside the OSHA exposure ranges.  Once the noise violators are identified, a review can be done and the implementation of engineered solutions such as Super air Nozzles or Super Air Knives can be investigated. Keeping harmful noise levels in check benefits everyone involved.

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

There is an informative Video Blog, presented by @EXAIR_LE that can be found here.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Calibration – Keep Your Meters True

EXAIR offers meters to measure the level of physical parameters such as sound and static. Each meter has sensitive electrical circuitry and a periodic calibration is recommended to ensure the meter readings are tried and true.

The model 9104 Digital Sound Level Meter is an easy to use instrument that measures and monitors the sound level pressure in a wide variety of industrial environments. The source of loud noises can be quickly identified so that corrective measures can be taken to keep sound levels at or below OSHA maximum allowable exposure limits.

The sound meter comes from the factory with an NIST (National Institute of Standards and Technology) certificate of accuracy and calibration.  As a good practice, EXAIR recommends a yearly calibration of the instrument, and we offer a service that calibrates the unit to the same NIST standards and provide a written report of the calibration.

The model 7905 Static Meter allows easy one-hand static measurements.  It is useful in both locating sources of high static charge and checking the reduction of static after treatment with an EXAIR Static Elimination product.  The unit is sensitive and responsive, and indicates the the surface polarity of objects up to +/- 20 kV when measured from 1″ away.

It is also recommended that the Static Meter be calibrated on a yearly basis.  EXAIR offers (3) levels of calibration service.  The first two provide calibration in accordance with MIL Standards using accepted procedures and standards traceable to NIST.  The third calibration service conforms to the same Mil Standard, as well as ISO/IEC standards.

Annual calibration service of your EXAIR Digital Sound and Static Meter, along with proper care and storage, will keep your meter performing tried and true for many years, providing accurate and useful measurements.

To initiate a calibration service, give us a call and an Application Engineer will issue an Returned Good number, and provide instructions on how to ship the meter to EXAIR.

If you have questions regarding calibration services for your meters or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Super Air Knives Helps Keep Labels on the Bottles.

Super Air Knife Blower Air Knife

Sometimes you need more power.  I received a phone call from a bottling facility that was currently using a blower style type of air knives.  They increased their production rate from 220 bottles/min to 300 bottles/minute, and they started to see issues in the labeling process.  Their operation consisted of a wash cycle, rinse cycle, drying cycle, then labeling.  They determined that the bottles were not getting dry enough during the drying cycle before the labels were applied.  They had a VFD (Variable Frequency Drive) for the blower system, and they reached the maximum rate.  Still the bottles were not getting dry enough to allow the label to stick to the surface properly.  This meant that they would have to increase the size of their blower system.  With the capital cost of a blower system, they decided to call EXAIR to see if we could help them with the drying application.

Compressed air is the best way for establishing a strong blowing force.  Instead of air pressures in the range of inches of water, the compressed air system can generate over 40 times the amount of pressure than a typical blower system.  EXAIR products uses this power of the compressed air to give you a wide range of blowing forces for drying, cooling, or moving products.  For the above application, I recommended two model 110212 Super Air Knife kits.  The kit includes the Super Air Knife, a filter, a regulator, and a shim set.  They mounted one knife on each side of the bottles to blow off and remove the liquid after the rinse cycle.  Even at the increased bottle speeds, the EXAIR Super Air Knives had no issues in keeping the bottles dry.  With the regulator and the shim, it was easy for them to dial in the correct amount of force without using excess compressed air.  The labels remained glued and the bottling process ran smoothly.  Because the company was impressed by the Super Air Knives, they wanted to comment on the comparisons between the blower knife and the Super Air Knife.

  1. Cost:
    1. Blower System – The reason for contacting EXAIR. Blower-type air knives are an expensive set up.  They require a blower, ducting, and a knife.  To have any flexibility, a control panel with a VFD will be needed.
    2. Super Air Knife – It is a fraction of the cost. With their system, we were roughly 1/10 the cost; even with the kit.  No capital expense report would be needed for the two air knives.
  2. Installation:
    1. Blower System – They stated that it took them a week to install the entire system before they were able to operate. They had to run electrical wires, controls, ducting, and they even had to change the conveying system slightly to accommodate the blower size.
    2. Super Air Knife – They mounted the filter and the regulator on the conveyor, and ran tubing to the Super Air Knives. Even with a fabricator making a bracket to fit into their system, they had the system up and running is less than two hours.
  3. Size:
    1. Blower System – The foot print of the blower is large and it takes up floor space. The 3” ducting had to be ran to an oversized air knife.  With the congestion of the bottle system, it made it difficult to optimize the position and the blowing angle to adequately dry the bottles.
    2. Super Air Knife – With the compact design, the Super Air Knife packs a large force in a small package. It has a footprint of 1 ¾” X 1 ½” X 12” long.  The air knife only required a ¼” NPT compressed air line to supply the compressed air.  It opened up the floor space as well as the bottling area.
  4. Maintenance:
    1. Blower System – The blower filter had to be changed regularly, and system had to be checked. Being that the blower motor is a mechanical device, the bearings will wear and the motor will fail over time.  These items should be checked quarterly as a PM which increase the cost to run the system.
    2. Super Air Knife – No moving parts to wear out. The only maintenance would be to change the filter once a year.
  5. Versatility:
    1. Blower System – They did have a VFD to control the blowing force. But it was still very limited.  With a 36% increase in the bottle speed, they went beyond the maximum capacity of the blower.
    2. Super Air Knife – With a regulator and the shim set, the blowing force can be controlled easily from a breeze to a blast. With their application, the customer only required 40 psig with a standard 0.002” shim to clean and dry the bottles.  They had the option to adjust the regulator or change the shim to get the appropriate amount of blowing force.  So, with any changes in the bottling operations, the Super Air Knife could easily be adjusted.  Also, with the blowing force being optimal from a distance of 3” to 12” from the target, they had more flexibility in angle and distance to hit the moving target.
  6. Quiet:
    1. Blower System – With the blower and turbulent air flow, the units are very loud. It had a sound level near 93 dBA, and with the operators working around the system, they needed PPE to protect them from the high potential of noise induced hearing loss.
    2. Super Air Knife – These units are very quiet. At 40 PSIG, the sound level is only at 61 dBA.  (Even operating at a pressure of 100 PSIG, the sound level is only 72 dBA).  This was very nice for the operators to work around as it wasn’t a constant noise nuisance.

In using the compressed air, the Super Air Knives are engineered to be very efficient.  The design creates a 40:1 amplification ratio which means that for every 1 part of compressed air, 40 parts of the ambient air is entrained.  But, even with the use of compressed air, the customer still wanted to share the ease of installing, the effectiveness of blowing, and the improvements to their process.  With the 6 points noted above, the customer wished that they would have contacted EXAIR at the beginning.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb