OSHA and Compressed Air Safety; Things to Review.

EXAIR Super Air Nozzles are fully OSHA Compliant – our Compliance Certificate is available upon request (left.) Your power strip and Christmas tree lights should have labels showing their current ratings – check these so you don’t overload the circuit (right.)

At EXAIR, we have a statement that says, “Safety is everyone’s responsibility.”  As a corporation, EXAIR builds its name around this by manufacturing safe and protective compressed air products.  In the United States, we have an organization called the Occupational Safety and Health Administration, OSHA, that enforces governmental directives for safe and healthy working environments.  They do training, outreach programs, and educational assistance for manufacturing plants to reduce injuries and fatalities.  They can also enforce these directives with heavy fines for violations.  With the compressed air system, the two most common violations are 29CFR 1910.242(b) for dead-end pressure/chip shielding and 29CFR 1910.95(a) for maximum allowable noise exposure.

Unsafe Nozzle

Above is an example of a nozzle that is dangerous.  As you can see, there is only one path where the air can pass through and this path could be blocked.  Other similar types of blow-off devices that would fall into this same group would include copper tubes, flexible lines, and open pipes.  They are dangerous as the compressed air cannot escape if it is blocked by your body or skin.  If operated above 30 PSIG (2 bar), the air from these nozzles could penetrate the skin and create an air embolism within the body, which can cause bodily harm or death.  This is a hazard which can be avoided by using EXAIR Super Air Nozzles and Safety Air Guns.  The nozzles are designed with fins, which allow the air to escape and prevent blockage of the airflow.  So, you can use the EXAIR Super Air Nozzles safely above 30 PSIG (2 bar) and remain OSHA safe.

To counteract the dead-end pressure violation, some nozzle manufacturers create a hole through the side of the nozzle (reference photo above).  This will allow for the compressed air to escape, but now the issue is noise level.  With an “open” hole in the nozzle, the compressed air is very turbulent and very loud.   The CDC reports that in 2007, “82% of the cases involving occupational hearing loss were reported among workers in the manufacturing sector.” Compressed air and pneumatic equipment are significant contributors to the noise exposure. OSHA created a chart to show the maximum allowable noise exposure.  This chart shows the exposure time and noise limits before requiring hearing protection.  The EXAIR Super Air Nozzles, Super Air Knives, and Super Air Amplifiers are designed to have laminar flow, which makes them very quiet.  As an example, the model 1210 Safety Air Gun has a sound level of only 74 dBA, well under the noise exposure limit for 8 hours.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

NIOSH created an overview of how to handle hazards in the workplace.  They call it the Hierarchy of Controls to best protect workers from danger.  The most effective way is by eliminating the hazard or by substituting the hazard.  The least effective way is with Personal Protective Equipment, or PPE.  For unsafe compressed air nozzles and guns, the proper way to reduce this hazard is to substitute it with an engineered solution.

One of the last things that companies think about when purchasing compressed air products is safety.  Loud noises and dead-end pressure can be missed or forgotten.  To avoid any future fines or having to purchase additional personal protective equipment (PPE), it will be less expensive and a preferred safety method to purchase an EXAIR product.  As in that above Hazard Hierarchy of Controls chart, EXAIR products are that engineered solution.  If you would like to improve the safety in your facility, move up to an engineered solution, and reduce energy costs; an Application Engineer at EXAIR can review your current blow-off devices.  Remember, safety is everyone’s responsibility. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Not All Compressed Air Guns Are The Same

If you work in an industrial plant or manufacturing environment, chances are you use some type of compressed air gun for cleaning parts, work areas, etc. Many air guns purchased through large industrial suppliers are a common choice due to the cost of the gun but as the saying goes – “you get what you pay for”. These types of guns may be cheap to purchase but they are also made cheap and have parts that can break easily, like the trigger or nozzle. In many cases, the nozzles on these guns are also in violation of OSHA requirements, producing dangerous discharge pressures and loud noise levels, which can lead to costly fines or potentially deadly injuries.

EXAIR offers 5 different styles of Safety Air Guns that not only eliminate these concerns, but also provide a more efficient operation, which can reduce energy costs. All of our Safety Air Guns are fitted with our engineered Air Nozzles  which meet OSHA Standard 1910.242(b) for 30 PSI dead end pressure, as they provide a relief or safe path for the air to exit if the nozzle were to be blocked or pressed against an operator’s body so the exiting air pressure will never reach 30 PSIG. They are also engineered to entrain surrounding air across the profile of the nozzle, which produces a smoother airflow, ultimately reducing wind shear, resulting in much lower sound levels, meeting OSHA Standard 29 CFR 1910.95(a).

 

 

The Precision Safety Air Gun body is made of a durable high impact, glass reinforced nylon, providing for a lightweight, ergonomic operation. These guns feature a curved extension, ideal for delivering a powerful stream of air in hard to reach areas, like clearing debris from drilled holes. All of the nozzles used with these units are either 316ss construction for durable, corrosion resistance or PEEK plastic for non-marring applications. The air inlet is 1/4 FNPT and there is a convenient hanger available for safe storage.

 

 

 

Our NEW VariBlast Compact Safety Air Guns are ideal for light to medium duty processes, featuring a variable flow trigger to achieve different force levels ranging from 2.0 ounces up to 1 pound, depending on the nozzle. The body is cast aluminum and there are (2) 1/4 FNPT air inlets available, 1 on the bottom and 1 on the back of the gun, as well as a storage hanger, for easy installation. Nozzles are available in zinc aluminum alloy, 303ss, 316ss and PEEK plastic. These guns are available with aluminum extensions from 6″ up to 72″.

 

 

The Soft Grip Safety Air Guns are commonly used in long-term use applications as they feature a comfortable grip and long trigger which helps to reduce hand and finger fatigue. The cast aluminum construction is well suited for more rugged environments and again, features a hanger hook. These guns can be fitted with aluminum, stainless steel or PEEK plastic to meet the demands of a variety of applications and are available with 6″ – 72″ aluminum extensions for extra reach or Flexible Stay Set Hoses , allowing the user to aim the airflow to a specific target area. The air inlets for these guns are going to be 1/4 FNPT.

 

 

 

EXAIR’s Heavy Duty Safety Air Guns deliver higher force and flows than other air guns, as these units feature a 3/8 FNPT air inlet, which maximizes the compressed air flow to the engineered Super Air Nozzle. Like the Soft Grip, the durable cast aluminum body is designed for use in tough industrial processes, and the ergonomic and comfortable trigger are ideal for hours of use. Aluminum extension are available, again in lengths from 6″ up to 72″, but feature a larger diameter for optimal flow and superior durability.

 

The Precision, VariBlast, Soft Grip and Heavy Duty Safety Air Guns are ALL available with an optional, polycarbonate Chip Shield to protect personnel from flying chips and debris, further meeting OSHA Standard 1910.242(b) for the safe use of compressed air.

 

Lastly we offer our Super Blast Safety Air Guns. The Super Blast Safety Air Guns are ideal for wide area blowoff, cooling or drying a part, as well as long distances. They feature a comfortable foam grip and spring loaded valve that will shut off the airflow if the gun is dropped. These units use our larger Super Air Nozzles and Super Air Nozzle Clusters, providing forces levels from 3.2 lbs. up to 23 lbs. Depending on which nozzle is fitted on the assembly, air inlets will range from 3/8 FNPT up to 1-1/4 FNPT. Aluminum extensions are available in 36″ or 72″ lengths.

 

 

For help selecting the best product to fit your particular application, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

How to Meet the OSHA Compressed Air Standard

Every day we talk to customers who need to comply with OSHA regulations for using compressed air to clean up their shop or product. Back in 1972 on Valentine’s Day, OSHA published Directive Number STD01-13-001 standard 1910.242(b), which strives to provide guidance on how manufacturers can safely use compressed air for cleaning purposes to comply with the Walsh-Healey Act of 1936.  This directive laid out acceptable methods for complying with 41CFR 50-204.8 and 29 CFR 1910.242(b)

The two methods are very simple, but still many people have questions.  The first method (pictured below) is to regulate the line pressure from the compressor to below 30 PSIG.

Regulator Method

Figure 1 Regulator method Photo Courtesy of osha.gov

The second method is to install a nozzle engineered to reduce the static pressure of the nozzle to less than 30 PSIG.

OSHA Nozzle Method

Figure 2 Nozzle method Photo Courtesy of osha.gov

The first method reduces the danger by limiting the energy in the system to less than an amount which can injure a person.  OSHA determined that 30 PSIG was the safe limit for the amount of pressure the human body could withstand without causing severe injury. The problem with this method is that cleaning with compressed air at 30 psig is virtually impossible.  Which means at such a low pressure the operator must pass the nozzle so close to the chips and debris, he might as well use a broom or pick each piece of debris up with his fingers. This first method I will label the regulator method. The second method introduces a relief valve at the nozzle, so that an operator cannot block off all of the openings of the nozzle, and build up any static pressure on their skin. I will call this the nozzle method.

Commonly and cheaply, the nozzle method is done by cross drilling a hole in an open pipe.  This is a sometimes effective method for protecting employees from static pressure, but it also is great at producing a tremendous amount of noise and wasting a lot of compressed air every year. The noise produced by even a ¼ pipe with a cross drilled hole fed with 80 PSIG can easily exceed 90 dBA and consume up to 140 SCFM. The noise can be even louder, if there are burrs or rough edges from drilling out the pipe.  This is also a violation of OSHA standard 29 CFR – 1910.95 (a), if the employee is not using hearing protection.

Air Nozzle work

To meet this OSHA standard, EXAIR’s solution is to engineer features which cannot be dead-ended into a wide variety of compressed air products. We do this a variety of ways depending on the product.  For the Super Air Nozzles, we utilize multiple small orifices which are protected by raised fins.  The multiple orifices offer an escape path for the air in case a single orifice is plugged. The fins protect the orifices so that no one person can block more than one orifice at a time.

So if you are worried about an OSHA inspector knocking on your door, or maybe you aren’t sure if you should be worried, contact us.  The Application Engineering team here will help you determine what engineered solution you need to keep those pesky fines away.

Dave Woerner
Application Engineer
Davewoerner@EXAIR.com
@EXAIR_DW