How To Solve A Problem with Compressed Air

In my (almost) six years as an EXAIR Application Engineer, I’ve learned a great many things about the capabilities of our products.  The way we do business sure does make it easy:

  • We readily share application information, as a team.  If you ask me a question, you’re asking all of us.  It does neither of us any good if I tell you something MIGHT work if one of my team knows it WON’T – or if someone knows what else DOES work.  If we can offer a solution, we will.
  • We’ll test your product, free of charge.  This is a popular way of finding out which Line Vac is best for conveying a particular product, for example.
  • If you’re considering a quiet, safe, and efficient EXAIR product as an upgrade, we’ll test your current product in our award winning Efficiency Lab, so you can compare accurate performance data and analyze the expected benefits…which can be dramatic.  Try us on that.
exair-testin

Line Vac conveyance rate testing (left;) Efficiency Lab testing (right.)

 

  • We’ll let YOU test our product, risk-free.  All catalog products come with a 30 Day Unconditional Guarantee.  We invite you to put it through its paces for up to a month.  If it’s not working out, we’ll arrange return for full credit.
  • We’ll do the math.  But first, a disclaimer: strictly comparing the force or flow of an engineered product to an open-end blow off won’t always tell the tale.  Our Intelligent Compressed Air Products are creating a laminar flow which won’t generate as high of a force/thrust as open-end blowing (which is turbulent by nature,) but is MUCH more conducive to efficiency and noise reduction, as well as similar (if not improved) performance.  But back to the math: if you know the metrics you need to meet for spot cooling (like a Vortex Tube, Adjustable Spot Cooler, Cold Gun, etc.) or for liquid spraying (the liquid flow rate and/or pattern size & shape from an Atomizing Spray Nozzle, for instance,) or the heat load that a Cabinet Cooler System can handle, we’ll do the calculations and specify the appropriate product.

Regardless of the application, if it can be solved with compressed air, it’s very likely that we have a great solution.  Call me to find out how we can help.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Reclassifying Mufflers

Have you ever walked into an industrial plant and noticed a “fog” in the air? If they have pneumatic equipment, then it is a good chance that it is an oil mist. With many pneumatic devices, they need oil to lubricate the o-rings and cylinders for functionality and life. This is generally done with a lubricator. A lubricator puts a small amount of oil in the compressed air line to coat the inside of valves and cylinders. The problem becomes when the valve switches or the cylinder retracts, the excess air is exhausted into the atmosphere. And with that air, there is a fine mist creating the “fog”.

Reclassifying Muffler

EXAIR Reclassifying mufflers are available from 1/8 NPT through 1 NPT

 

Most pneumatic equipment will have some type of muffler to reduce the noise. Typically they are a sintered bronze muffler. They work well in noise reduction, but they do not capture the oil. OSHA (Occupational Safety and Health Association) has a requirement for operator’s exposure. Under the standard 29CFR 1910.1000, the cumulative exposure for a worker is 4.32 PPM (parts per million) for an 8 hour shift and a standard 40 hour week. As EXAIR Corporation is a leader in safety with compressed air systems, we created a muffler with an oil coalescer, or our Reclassifying Muffler. The Reclassifying Muffler will be able to accomplish two things: 1. reduce the noise level, and 2. remove the oil from the exhausted air. The complex matrix of fibers absorbs the noise caused by the pressure relief. Also, this same complex matrix of fibers creates a tortuous path for the oil particles. It will collect on the fibers and coalesce into larger particles. The larger oil particles will now be able to have gravity move the residual oil down the side of the Reclassifying Muffler. At the bottom, we have a sump that will contain the waste oil and a ¼” tube adaptor to discard it safely away. We have a range of sizes from 1/8” npt to 1” npt depending on the amount of exhaust air flow. In some instances, you can manifold the lines together to use one larger Reclassifying Muffler. An instance of this would be many small valves inside an electrical cabinet that would need to have the exhaust air removed. With our range of Reclassifying Mufflers, you will not have to walk around in the fog.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Reduce Noise Exposure with Super Air Nozzles

News from the CDC that those of us involved with industrial safety are paying close attention to is the release of their NIOSH (National Institute for Occupational Safety and Health) division’s Hazard Evaluation Program Noise Measurement Database, which contains data obtained through Health Hazard Evaluation surveys performed between 1996 and 2012. It includes hundreds of personal noise exposure measurements (how much noise was received by individuals) and almost as many area noise measurements (how much noise was made.) A comparison of these measurements, of course, is valuable in determining if appropriate measures are being taken to abate the exposure, which is key: there are an awful lot of industrial processes where there’s nothing that can be done about the generation of noise…they’re just simply LOUD. So, they focus on what they can do to limit exposure: Use engineering controls (retrofit open line with engineered nozzles, build sound barriers) , use administrative controls (relocating personnel away from the sound), use personal protective equipment, and spending as little time as possible near the source.

Regardless of what people can get used to, the area noise associated with compressed air use CAN be reduced, while still maintaining the efficiency of the operation. Here’s the deal:

*The most basic form of air blow off is a piece of pipe, tubing, or hose connected to a source of compressed air. When it’s opened to the atmosphere, the compressed air exits with a great deal of force. This makes quite a racket, and the only way to quiet it down is to reduce the air supply pressure. Then you get less force, however, and it might not get the job done.

*Engineered air nozzles, such as EXAIR’s Super Air Nozzles, solve this problem by design:

air nozzle flow

The compressed air supply (black arrow) uses the Coanda effect when it exits the series of holes recessed in the array of fins (dark blue arrows.) This serves to entrain an enormous amount of air from the surrounding environment (light blue arrows,) which not only results in a high volume flow rate at minimal consumption, but also makes the resultant air flow very quiet.

EXAIR Super Air Nozzles are quiet, efficient, and easy to get…we maintain inventory of anything you see in the Catalog, all available for same day shipment. If you’d like to know how EXAIR products can be easy on your ears…and your wallet…give me a call!

Russ Bowman
Application Engineer
(513)671-3322 local
(800)923-9247 toll free
(513)671-3363 fax
Visit us on the Web
Follow me on Twitter
Like us on Facebook

%d bloggers like this: